|
|
ix | |
|
|
xi | |
Preface |
|
xiii | |
|
|
1 | (6) |
|
2 Path Integrals in Quantum Mechanics |
|
|
7 | (28) |
|
2.1 The Feynman Path Integral |
|
|
7 | (6) |
|
2.2 Defining the Path Integral |
|
|
13 | (3) |
|
2.3 Transformation Techniques |
|
|
16 | (4) |
|
2.3.1 Point Canonical Transformations |
|
|
16 | (1) |
|
2.3.2 Space-Time Transformations |
|
|
16 | (2) |
|
2.3.3 Separation of Variables |
|
|
18 | (2) |
|
2.4 Group Path Integration |
|
|
20 | (3) |
|
2.5 Klein-Gordon Particle |
|
|
23 | (1) |
|
|
24 | (11) |
|
2.6.1 The Quadratic Lagrangian |
|
|
24 | (1) |
|
2.6.2 The Radial Harmonic Oscillator |
|
|
25 | (1) |
|
2.6.3 The Poschl--Teller Potential |
|
|
25 | (2) |
|
2.6.4 The Modified Poschl--Teller Potential |
|
|
27 | (1) |
|
2.6.5 Parametric Path-Integrals |
|
|
27 | (1) |
|
2.6.6 The O(2,2)-Hyperboloid |
|
|
28 | (4) |
|
2.6.7 δ-Functions and Boundary Problems |
|
|
32 | (2) |
|
2.6.8 Miscellaneous Results |
|
|
34 | (1) |
|
3 Separable Coordinate Systems on Spaces of Constant Curvature |
|
|
35 | (16) |
|
3.1 Separation of Variables and Breaking of Symmetry |
|
|
35 | (4) |
|
3.2 Classification of Coordinate Systems |
|
|
39 | (2) |
|
3.3 Coordinate Systems in Spaces of Constant Curvature |
|
|
41 | (10) |
|
3.3.1 Classification of Coordinate Systems |
|
|
42 | (2) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (2) |
|
3.3.5 Pseudo-Euclidean Space |
|
|
47 | (1) |
|
3.3.6 A Hilbert Space Model |
|
|
48 | (3) |
|
4 Path Integrals in Pseudo-Euclidean Geometry |
|
|
51 | (24) |
|
4.1 The Pseudo-Euclidean Plane |
|
|
51 | (11) |
|
4.2 Three-Dimensional Pseudo-Euclidean Space |
|
|
62 | (13) |
|
5 Path Integrals in Euclidean Spaces |
|
|
75 | (12) |
|
5.1 Two-Dimensional Euclidean Space |
|
|
75 | (3) |
|
5.2 Three-Dimensional Euclidean Space |
|
|
78 | (9) |
|
6 Path Integrals on Spheres |
|
|
87 | (16) |
|
6.1 The Two-Dimensional Sphere |
|
|
87 | (5) |
|
6.2 The Three-Dimensional Sphere |
|
|
92 | (11) |
|
7 Path Integrals on Hyperboloids |
|
|
103 | (24) |
|
7.1 The Two-Dimensional Pseudosphere |
|
|
103 | (8) |
|
7.2 The Three-Dimensional Pseudosphere |
|
|
111 | (16) |
|
8 Path Integral on the Complex Sphere |
|
|
127 | (20) |
|
8.1 The Two-Dimensional Complex Sphere |
|
|
127 | (5) |
|
8.2 The Three-Dimensional Complex Sphere |
|
|
132 | (6) |
|
8.3 Path Integral Evaluations on the Complex Sphere |
|
|
138 | (9) |
|
8.3.1 Path Integral Representations on S3C: Part I |
|
|
138 | (3) |
|
8.3.2 Path Integral Representations on S3C: Part II |
|
|
141 | (6) |
|
9 Path Integrals on Hermitian Hyperbolic Space |
|
|
147 | (8) |
|
9.1 Hermitian Hyperbolic Space HH(2) |
|
|
147 | (3) |
|
9.2 Path Integral Evaluations on HH(2) |
|
|
150 | (5) |
|
10 Path Integrals on Darboux Spaces |
|
|
155 | (24) |
|
10.1 Two-Dimensional Darboux Spaces |
|
|
155 | (6) |
|
10.2 Path Integral Evaluations |
|
|
161 | (8) |
|
|
161 | (1) |
|
|
162 | (1) |
|
10.2.3 Darboux Space DIII |
|
|
163 | (3) |
|
|
166 | (3) |
|
10.3 Three-Dimensional Darboux Spaces |
|
|
169 | (10) |
|
10.3.1 The Three-Dimensional Darboux Space D3d--I |
|
|
169 | (3) |
|
10.3.2 The Three-Dimensional Darboux Space D3d--II |
|
|
172 | (2) |
|
10.3.3 Path Integral Evaluations on Three-Dimensional Darboux Space |
|
|
174 | (5) |
|
11 Path Integrals on Single-Sheeted Hyperboloids |
|
|
179 | (14) |
|
11.1 The Two-Dimensional Single-Sheeted Hyperboloid |
|
|
179 | (14) |
|
12 Miscellaneous Results on Path Integration |
|
|
193 | (12) |
|
12.1 The D-Dimensional Pseudosphere |
|
|
193 | (2) |
|
12.2 Hyperbolic Rank-One Spaces |
|
|
195 | (5) |
|
12.3 Path Integral on SU(n) and SU(n -- 1,1) |
|
|
200 | (5) |
|
12.3.1 Path Integral on SU(n) |
|
|
200 | (2) |
|
12.3.2 Path Integral on SU(n -- 1,1) |
|
|
202 | (3) |
|
13 Billiard Systems and Periodic Orbit Theory |
|
|
205 | (28) |
|
13.1 Some Elements of Periodic Orbit Theory |
|
|
205 | (3) |
|
13.2 A Billiard System in a Hyperbolic Rectangle |
|
|
208 | (13) |
|
13.3 Other Integrable Billiards in Two and Three Dimensions |
|
|
221 | (6) |
|
|
222 | (1) |
|
13.3.2 Hyperbolic Billiards |
|
|
223 | (4) |
|
13.4 Numerical Investigation of Integrable Billiard Systems |
|
|
227 | (6) |
|
13.4.1 Two-Dimensional Systems |
|
|
227 | (2) |
|
13.4.2 Three-Dimensional Systems |
|
|
229 | (4) |
|
14 The Selberg Trace Formula |
|
|
233 | (40) |
|
14.1 The Selberg Trace Formula in Mathematical Physics |
|
|
233 | (2) |
|
14.2 Applications and Generalizations |
|
|
235 | (13) |
|
14.3 The Selberg Trace Formula on Riemann Surfaces |
|
|
248 | (13) |
|
14.3.1 The Selberg Zeta-Function |
|
|
256 | (2) |
|
14.3.2 Determinants of Maass-Laplacians |
|
|
258 | (3) |
|
14.4 The Selberg Trace Formula on Bordered Riemann Surfaces |
|
|
261 | (12) |
|
14.4.1 The Selberg Zeta-Function |
|
|
268 | (2) |
|
14.4.2 Determinants of Maass-Laplacians |
|
|
270 | (3) |
|
15 The Selberg Super-Trace Formula |
|
|
273 | (38) |
|
15.1 Automorphisms on Super-Riemann Surfaces |
|
|
273 | (12) |
|
15.1.1 Closed Super-Riemann Surfaces |
|
|
277 | (1) |
|
15.1.2 Compact Fundamental Domain |
|
|
278 | (2) |
|
15.1.3 Non-Compact Fundamental Domain |
|
|
280 | (5) |
|
15.2 Selberg Super-Zeta-Functions |
|
|
285 | (8) |
|
15.2.1 The Selberg Super-Zeta-Function Z0 |
|
|
285 | (3) |
|
15.2.2 The Selberg Super-Zeta-Function Z1 |
|
|
288 | (3) |
|
15.2.3 The Selberg Super-Zeta-Function ZS |
|
|
291 | (2) |
|
15.3 Super-Determinants of Dirac Operators |
|
|
293 | (2) |
|
15.4 The Selberg Super-Trace Formula on Bordered Super-Riemann Surfaces |
|
|
295 | (6) |
|
15.4.1 Compact Fundamental Domain |
|
|
297 | (2) |
|
15.4.2 Non-Compact Fundamental Domain |
|
|
299 | (2) |
|
15.5 Selberg Super-Zeta-Functions |
|
|
301 | (6) |
|
15.5.1 The Selberg Super-Zeta-Function R0 |
|
|
302 | (2) |
|
15.5.2 The Selberg Super-Zeta-Function R1 |
|
|
304 | (1) |
|
15.5.3 The Selberg Super-Zeta-Function Zs |
|
|
305 | (2) |
|
15.6 Super-Determinants of Dirac Operators |
|
|
307 | (2) |
|
15.7 Asymptotic Distributions on Super-Riemann Surfaces |
|
|
309 | (2) |
|
16 Summary and Discussion |
|
|
311 | (18) |
|
16.1 Results on Path Integrals |
|
|
311 | (13) |
|
|
311 | (1) |
|
|
312 | (5) |
|
16.1.3 Super-Integrable Potentials in Spaces of Non-Constant Curvature |
|
|
317 | (4) |
|
16.1.4 Listing the Path Integral Representations |
|
|
321 | (3) |
|
16.2 Results on Trace Formulae |
|
|
324 | (1) |
|
16.3 Miscellaneous Results, Final Remarks, and Outlook |
|
|
325 | (4) |
Bibliography |
|
329 | (40) |
Index |
|
369 | |