Muutke küpsiste eelistusi

E-raamat: Pattern Classification of Medical Images: Computer Aided Diagnosis

  • Formaat: EPUB+DRM
  • Sari: Health Information Science
  • Ilmumisaeg: 27-Jun-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319570273
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Health Information Science
  • Ilmumisaeg: 27-Jun-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319570273

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents advances in biomedical imaging analysis and processing techniques using time dependent medical image datasets for computer aided diagnosis. The analysis of time-series images is one of the most widely appearing problems in science, engineering, and business. In recent years this problem has gained importance due to the increasing availability of more sensitive sensors in science and engineering and due to the wide-spread use of computers in corporations which have increased the amount of time-series data collected by many magnitudes. An important feature of this book is the exploration of different approaches to handle and identify time dependent biomedical images. Biomedical imaging analysis and processing techniques deal with the interaction between all forms of radiation and biological molecules, cells or tissues, to visualize small particles and opaque objects, and to achieve the recognition of biomedical patterns. These are topics of great importance to biomedical science, biology, and medicine. Biomedical imaging analysis techniques can be applied in many different areas to solve existing problems. The various requirements arising from the process of resolving practical problems motivate and expedite the development of biomedical imaging analysis. This is a major reason for the fast growth of the discipline.

1 Introduction and Motivation for Conducting Medical Image Analysis
1(26)
1.1 Introduction to Time-Resolved Terahertz Spectroscopy and Imaging
2(8)
1.1.1 Time Domain and Frequency Domain THz Spectroscopy
2(6)
1.1.2 Recent Advances in Simultaneous Time-Frequency Dependent THz Spectroscopy
8(2)
1.2 The Application of Magnetic Resonance to Biomedical Imaging
10(7)
1.3 Placing THz Imaging and MRI Time-Series in a Common Signal Processing Framework
17(2)
1.4 Introduction to Retinal Fundus Imaging
19(3)
1.5 Introduction to Optical Coherence Tomography (OCT)
22(5)
2 Overview of Clinical Applications Using THz Pulse Imaging, MRI, OCT and Fundus Imaging
27(24)
2.1 Recent Advances in the Application of THz Pulse Spectroscopy to Biomedical Imaging
27(24)
2.1.1 THz Radiation Absorption and Detection in Tissue
28(1)
2.1.2 Identification of Compounds with Complex Composition
29(2)
2.1.3 Recent Advances in the Application of DCE-MRI Imaging Techniques to Biomedical Imaging
31(2)
2.1.4 Recent Advances in the Application of fMRI Imaging to Biomedical Imaging
33(3)
2.1.5 Advantages and Shortfalls of T-Rays and DCE-MRI & FMRI
36(2)
2.1.6 Combining MRI with Alternative THz Spectrometric Systems and Other Imaging Modalities
38(7)
2.1.7 Recent Advances in the Application of the Fundus Camera to Disease Diagnosis
45(2)
2.1.8 Recent Advances in the Application of OCT Techniques to Disease Diagnosis
47(2)
2.1.9 Alternative Multichannel and MEMS Based OCT Imaging Modalities
49(2)
3 Recent Advances in Medical Data Preprocessing and Feature Extraction Techniques
51(42)
3.1 Overview of Medical Image Data Preprocessing Strategies
52(12)
3.1.1 Data Windowing and Model Fitting Parametric Approaches
52(1)
3.1.2 Multi-resolution Wavelet Analysis for Noise Removal
53(4)
3.1.3 Current Standards and Recent Developments in Multiresolution Feature Representation in Imaging
57(2)
3.1.4 Recent Advances in MRI Wavelet Denoising
59(1)
3.1.5 Recent Advances in Fundus Image Denoising
60(3)
3.1.6 The Need for a Multiresolution Image Fusion Approach
63(1)
3.2 Overview of Feature Selection Strategies
64(29)
3.2.1 Feature Selection Strategies in THz TPI Datasets
64(7)
3.2.2 Feature Extraction and Selection on the Basis of Cross-correlation Sequences
71(3)
3.2.3 Feature Selection Strategies for MRI Datasets
74(5)
3.2.4 Spatiotemporal Correlations and Cluster Analysis of Brain Activity Using fMRI
79(6)
3.2.5 Feature Selection in Retinal Fundus Photography Following Image Enhancement
85(5)
3.2.6 Feature Extraction and Pattern Identification of Pathology Distortion in SD-OCT Imaging
90(2)
3.2.7 Statistical Analysis Based on Feature Selection Strategies
92(1)
4 Pattern Classification
93(36)
4.1 Introduction to Pattern Classification
93(1)
4.2 Feature Based Mahalanobis Distance Classifiers
94(1)
4.3 Support Vector Machine Classifiers (SVMs)
95(6)
4.3.1 Binary Classification of SVMs
95(3)
4.3.2 Pairwise SVM Classification of Multiple Classes
98(1)
4.3.3 Application of SVM Classifiers to THz-TPI Measurements
99(2)
4.4 Real-Valued Extreme Learning Machine Classifier
101(2)
4.5 Complex Valued ELMs for Classification
103(20)
4.5.1 Review of Complex-Valued RKHS and Wirtinger's Calculus
103(2)
4.5.2 Defining Higher-Dimension Hyprplanes Using Quaternion and Other Division Algebras for Classification
105(5)
4.5.3 Determination of the Maximum-Margin Hyperplanes ofCELM
110(7)
4.5.4 Multinomial Logistic Regression Classifier with Ridge Estimators (MLR)
117(1)
4.5.5 Naive Bayesian (NB) Classifier
118(1)
4.5.6 Performance Evaluation of Several Different Classifiers
118(3)
4.5.7 Clustering Techniques to Segment THz Images
121(2)
4.6 Retinal Fundus Image Analysis via Supervised and Non-supervised Learning
123(6)
4.6.1 Fundus Image Vessel Segmentation
123(1)
4.6.2 Algorithmic Detection of the Optic Disk
124(2)
4.6.3 Retinal Vessel Classification: Identifying and Sorting Arteries and Veins
126(1)
4.6.4 Automated Image Classification Using Criteria Directly Developed from Clinicians
127(2)
5 Introduction to MRI Time Series Image Analysis Techniques
129(36)
5.1 Analysis of DCE-MRI Data
129(5)
5.1.1 Outlook for Future Tensorial Algebra Based Feature and Image Registration
131(2)
5.1.2 Performance Measures
133(1)
5.2 Tensorial Representations in MRI
134(2)
5.3 Extensions to Multi-channel Classifiers
136(7)
5.3.1 Suppression of Background Voxels Through Multi-channel Reconstruction
140(1)
5.3.2 Increased Image Contrast Between Tumours and Background Through Multi-channel Reconstruction
141(2)
5.4 Image Registration of MRIs
143(3)
5.5 Pattern Identification of Spatiotemporal Association of Features in Tumours from DCE-MRI Data
146(3)
5.6 Pattern Classification of Spatiotemporal Association Features in fMRI Data
149(16)
5.6.1 Supervised Tensor Learning of Brain Disorders in fMRI Datasets
149(2)
5.6.2 Supervised Multivariate Learning of Brain Disorders from fMRI Data
151(3)
5.6.3 Topological Graph Kernel on Multiply Thresholded Functional Connectivity Networks
154(6)
5.6.4 Machine Learning Using Information from Brain Graphs
160(1)
5.6.5 Additional Considerations Regarding MRI Feature Extraction Methodologies
161(2)
5.6.6 Recent Relevant Advances from the Computer Vision Community
163(2)
6 Outlook for Clifford Algebra Based Feature and Deep Learning AI Architectures
165(14)
6.1 Prospects for Medical Image Analysis Under a Clifford Algebra Framework
165(4)
6.2 Outlook for Developing a Geometric Neuron Deep Learning of Time Series Datasets in Medical Images
169(8)
6.3 Prospects for Alternative Classifiers in Deep Learning of Unlabelled Medical Image Data
177(2)
7 Concluding Remarks
179(4)
References 183(32)
Index 215