Foreword |
|
xiii | |
Preface |
|
xxi | |
List of Tables |
|
xxv | |
List of Figures |
|
xxvii | |
1 Introduction |
|
1 | (28) |
|
|
1 | (2) |
|
1.2 Pattern Recognition in Brief |
|
|
3 | (4) |
|
|
4 | (1) |
|
1.2.2 Feature selection/extraction |
|
|
4 | (1) |
|
|
5 | (2) |
|
1.3 Knowledge Discovery in Databases (KDD) |
|
|
7 | (3) |
|
|
10 | (4) |
|
|
10 | (2) |
|
|
12 | (1) |
|
1.4.3 Applications of data mining |
|
|
12 | (2) |
|
1.5 Different Perspectives of Data Mining |
|
|
14 | (3) |
|
1.5.1 Database perspective |
|
|
14 | (1) |
|
1.5.2 Statistical perspective |
|
|
15 | (1) |
|
1.5.3 Pattern recognition perspective |
|
|
15 | (1) |
|
1.5.4 Research issues and challenges |
|
|
16 | (1) |
|
1.6 Scaling Pattern Recognition Algorithms to Large Data Sets |
|
|
17 | (4) |
|
|
17 | (1) |
|
1.6.2 Dimensionality reduction |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
1.6.6 Efficient search algorithms |
|
|
20 | (1) |
|
1.7 Significance of Soft Computing in KDD |
|
|
21 | (1) |
|
|
22 | (7) |
2 Multiscale Data Condensation |
|
29 | (30) |
|
|
29 | (3) |
|
2.2 Data Condensation Algorithms |
|
|
32 | (2) |
|
2.2.1 Condensed nearest neighbor rule |
|
|
32 | (1) |
|
2.2.2 Learning vector quantization |
|
|
33 | (1) |
|
2.2.3 Astrahan's density-based method |
|
|
34 | (1) |
|
2.3 Multiscale Representation of Data |
|
|
34 | (3) |
|
2.4 Nearest Neighbor Density Estimate |
|
|
37 | (1) |
|
2.5 Multiscale Data Condensation Algorithm |
|
|
38 | (2) |
|
2.6 Experimental Results and Comparisons |
|
|
40 | (12) |
|
|
41 | (1) |
|
2.6.2 Test of statistical significance |
|
|
41 | (6) |
|
2.6.3 Classification: Forest cover data |
|
|
47 | (1) |
|
2.6.4 Clustering: Satellite image data |
|
|
48 | (1) |
|
2.6.5 Rule generation: Census data |
|
|
49 | (3) |
|
2.6.6 Study on scalability |
|
|
52 | (1) |
|
2.6.7 Choice of scale parameter |
|
|
52 | (1) |
|
|
52 | (7) |
3 Unsupervised Feature Selection |
|
59 | (24) |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
62 | (2) |
|
|
63 | (1) |
|
|
64 | (1) |
|
3.4 Feature Selection Using Feature Similarity (FSFS) |
|
|
64 | (7) |
|
3.4.1 Feature similarity measures |
|
|
65 | (3) |
|
3.4.2 Feature selection through clustering |
|
|
68 | (3) |
|
3.5 Feature Evaluation Indices |
|
|
71 | (3) |
|
|
71 | (1) |
|
3.5.2 Unsupervised indices |
|
|
72 | (1) |
|
3.5.3 Representation entropy |
|
|
73 | (1) |
|
3.6 Experimental Results and Comparisons |
|
|
74 | (8) |
|
3.6.1 Comparison: Classification and clustering performance |
|
|
74 | (5) |
|
3.6.2 Redundancy reduction: Quantitative study |
|
|
79 | (1) |
|
3.6.3 Effect of cluster size |
|
|
80 | (2) |
|
|
82 | (1) |
4 Active Learning Using Support Vector Machine |
|
83 | (20) |
|
|
83 | (3) |
|
4.2 Support Vector Machine |
|
|
86 | (2) |
|
4.3 Incremental Support Vector Learning with Multiple Points |
|
|
88 | (1) |
|
4.4 Statistical Query Model of Learning |
|
|
89 | (2) |
|
|
90 | (1) |
|
4.4.2 Confidence factor of support vector set |
|
|
90 | (1) |
|
4.5 Learning Support Vectors with Statistical Queries |
|
|
91 | (3) |
|
4.6 Experimental Results and Comparison |
|
|
94 | (7) |
|
4.6.1 Classification accuracy and training time |
|
|
94 | (3) |
|
4.6.2 Effectiveness of the confidence factor |
|
|
97 | (1) |
|
4.6.3 Margin distribution |
|
|
97 | (4) |
|
|
101 | (2) |
5 Rough-fuzzy Case Generation |
|
103 | (20) |
|
|
103 | (2) |
|
5.2 Soft Granular Computing |
|
|
105 | (1) |
|
|
106 | (5) |
|
5.3.1 Information systems |
|
|
107 | (1) |
|
5.3.2 Indiscernibility and set approximation |
|
|
107 | (1) |
|
|
108 | (2) |
|
5.3.4 Dependency rule generation |
|
|
110 | (1) |
|
5.4 Linguistic Representation of Patterns and Fuzzy Granulation |
|
|
111 | (3) |
|
5.5 Rough-fuzzy Case Generation Methodology |
|
|
114 | (6) |
|
5.5.1 Thresholding and rule generation |
|
|
115 | (2) |
|
5.5.2 Mapping dependency rules to cases |
|
|
117 | (1) |
|
|
118 | (2) |
|
5.6 Experimental Results and Comparison |
|
|
120 | (1) |
|
|
121 | (2) |
6 Rough-fuzzy Clustering |
|
123 | (26) |
|
|
123 | (1) |
|
6.2 Clustering Methodologies |
|
|
124 | (2) |
|
6.3 Algorithms for Clustering Large Data Sets |
|
|
126 | (3) |
|
6.3.1 CLARANS: Clustering large applications based upon randomized search |
|
|
126 | (1) |
|
6.3.2 BIRCH: Balanced iterative reducing and clustering using hierarchies |
|
|
126 | (1) |
|
6.3.3 DBSCAN: Density-based spatial clustering of applications with noise |
|
|
127 | (1) |
|
6.3.4 STING: Statistical information grid |
|
|
128 | (1) |
|
6.4 CEMMiSTRI: Clustering using EM, Minimal Spanning Tree and Rough-fuzzy Initialization |
|
|
129 | (6) |
|
6.4.1 Mixture model estimation via EM algorithm |
|
|
130 | (1) |
|
6.4.2 Rough set initialization of mixture parameters |
|
|
131 | (1) |
|
6.4.3 Mapping reducts to mixture parameters |
|
|
132 | (1) |
|
6.4.4 Graph-theoretic clustering of Gaussian components |
|
|
133 | (2) |
|
6.5 Experimental Results and Comparison |
|
|
135 | (4) |
|
6.6 Multispectral Image Segmentation |
|
|
139 | (8) |
|
6.6.1 Discretization of image bands |
|
|
141 | (1) |
|
6.6.2 Integration of EM, MST and rough sets |
|
|
141 | (1) |
|
6.6.3 Index for segmentation quality |
|
|
141 | (1) |
|
6.6.4 Experimental results and comparison |
|
|
141 | (6) |
|
|
147 | (2) |
7 Rough Self-Organizing Map |
|
149 | (16) |
|
|
149 | (1) |
|
7.2 Self-Organizing Maps (SOM) |
|
|
150 | (2) |
|
|
151 | (1) |
|
7.2.2 Effect of neighborhood |
|
|
152 | (1) |
|
7.3 Incorporation of Rough Sets in SOM (RSOM) |
|
|
152 | (2) |
|
7.3.1 Unsupervised rough set rule generation |
|
|
153 | (1) |
|
7.3.2 Mapping rough set rules to network weights |
|
|
153 | (1) |
|
7.4 Rule Generation and Evaluation |
|
|
154 | (2) |
|
7.4.1 Extraction methodology |
|
|
154 | (1) |
|
|
155 | (1) |
|
7.5 Experimental Results and Comparison |
|
|
156 | (7) |
|
7.5.1 Clustering and quantization error |
|
|
157 | (5) |
|
7.5.2 Performance of rules |
|
|
162 | (1) |
|
|
163 | (2) |
8 Classification, Rule Generation and Evaluation using Modular Rough-fuzzy MLP |
|
165 | (36) |
|
|
165 | (2) |
|
|
167 | (3) |
|
|
170 | (3) |
|
8.3.1 Rule generation algorithms |
|
|
170 | (3) |
|
8.3.2 Rule interestingness |
|
|
173 | (1) |
|
|
173 | (2) |
|
|
175 | (3) |
|
|
175 | (1) |
|
8.5.2 Rough set knowledge encoding |
|
|
176 | (2) |
|
8.6 Modular Evolution of Rough-fuzzy MLP |
|
|
178 | (6) |
|
|
178 | (4) |
|
8.6.2 Evolutionary design |
|
|
182 | (2) |
|
8.7 Rule Extraction and Quantitative Evaluation |
|
|
184 | (5) |
|
8.7.1 Rule extraction methodology |
|
|
184 | (4) |
|
8.7.2 Quantitative measures |
|
|
188 | (1) |
|
8.8 Experimental Results and Comparison |
|
|
189 | (10) |
|
|
190 | (2) |
|
|
192 | (7) |
|
|
199 | (2) |
A Role of Soft-Computing Tools in KDD |
|
201 | (10) |
|
|
201 | (5) |
|
|
202 | (1) |
|
|
203 | (1) |
|
A.1.3 Functional dependencies |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (1) |
|
A.2.2 Clustering and self organization |
|
|
206 | (1) |
|
|
207 | (1) |
|
A.3 Neuro-fuzzy Computing |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
B Data Sets Used in Experiments |
|
211 | (4) |
References |
|
215 | (22) |
Index |
|
237 | (6) |
About the Authors |
|
243 | |