Muutke küpsiste eelistusi

E-raamat: Pedestrian Dynamics: Mathematical Theory and Evacuation Control

(University of Nevada, Las Vegas, USA)
  • Formaat: 169 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781439805206
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 169 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781439805206

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Homeland security, transportation, and city planning depend upon well-designed evacuation routes. You cant wait until the day of to realize your plan wont work. Designing successful evacuation plans requires an in-depth understanding of models and control designs for the problems of traffic flow, construction and road closures, and the intangible human factors. Pedestrian Dynamics: Mathematical Theory and Evacuation Control clearly delineates the derivation of mathematical models for pedestrian dynamics and how to use them to design feedback controls for evacuations.

The book includes:











Mathematical models derived from basic principles Mathematical analysis of the model Details of past work MATLAB® code 65 figures and 400 equations

Unlike most works on traffic flow, this book examines the development of optimal methods to effectively control and improve pedestrian traffic flow. The work of a leading expert, it examines the differential equations applied to conservation laws encountered in the study of pedestrian dynamics and evacuation control problem. The author presents new pedestrian traffic models for multi-directional flow in two dimensions. He considers a range of control models in various simulations, including relaxed models and those concerned with direction and magnitude velocity commands. He also addresses questions of time, cost, and scalability. The book clearly demonstrates what the future challenges are and provides the tools to meet them.
List of Figures
List of Tables
Preface
Acknowledgments
1 Introduction 1
1.1 Motivation
1
1.1.1 Vehicular Traffic Control
1
1.1.2 Pedestrian Traffic Control
2
1.1.3 Evacuation Problems
2
1.2 Literature Survey
4
1.2.1 Traffic Models
4
1.2.2 Traffic Control
4
1.2.3 Mathematical Theory of Hyperbolic Conservation Laws
4
1.3 Outline
5
2 Derivation of Conservation Laws 7
2.1 Mass Conservation
7
2.1.1 Mass Conservation in One Dimension
7
2.1.2 Mass Conservation in Two Dimensions
9
2.1.3 Mass Conservation in n Dimensions
12
2.2 Momentum Conservation
12
2.2.1 Momentum Conservation in One Dimension
12
2.2.2 Momentum Conservation in Two Dimensions
13
2.2.3 Momentum Equation with Viscosity
14
2.3 Energy Conservation
16
2.4 Combined Equations
17
2.4.1 Equation of State
17
2.5 General Conservation
20
3 Traffic Models: One Dimensional Case 23
3.1 Lighthill-Whitham-Richards Model
23
3.1.1 Greenshield's Model
24
3.1.2 Greenberg Model
24
3.1.3 Underwood Model
24
3.1.4 Diffusion Model
24
3.1.5 Other Models
28
3.1.6 LWR Models
28
3.2 Payne-Whitham Model
30
3.2.1 Characteristic Variables
32
3.2.2 Characteristic Variables for Payne-Whitham Model
33
3.3 Aw-Rascle Model
34
3.3.1 Characteristic Variables for Aw-Rascle Model
35
3.4 Zhang Model
36
3.4.1 Characteristic Variables for Zhang Model
38
3.5 Pedestrian and Control Models in One Dimension
39
3.5.1 LWR Pedestrian Model with Greenshields Flow
39
3.5.2 Payne-Whitham Pedestrian Model with Greenshields Flow
39
3.5.3 Aw-Rascle Pedestrian Model with Greenshields Flow
40
3.5.4 Zhang Pedestrian Model with Greenshields Flow
40
4 Traffic Models: Two-Dimensional Case 41
4.1 Two-Dimensional LWR Model
41
4.1.1 Eigenvalues
42
4.2 Two-Dimensional Payne-Whitham Model
43
4.2.1 Eigenvalues and Eigenvectors
43
4.2.2 Eigenvalues and Eigenvectors in an Arbitrary Direction
44
4.3 Two-Dimensional Aw-Rascle Model
46
4.4 Two-Dimensional Zhang Model
46
5 Conservation Law Solutions 49
5.1 Method of Characteristics
49
5.1.1 Characteristics in Two Dimensions
51
5.1.2 Characteristics for a System
51
5.2 Classical or Strong Solutions
52
5.3 Weak Solutions
52
5.3.1 Blowup of Solutions
53
5.3.2 Generalized Solutions
56
5.3.3 Generalized Solution Property
57
5.3.4 Weak Solution Property
58
5.3.5 Trace Operator for Functions of Bounded Variation
60
5.4 Scalar Riemann Problem
62
5.4.1 Shock Solution
62
5.4.2 Rarefaction Solution
63
5.5 Admissibility Conditions
66
5.5.1 Vanishing Viscosity Solution
66
5.5.2 Entropy Admissible Solution
66
5.5.3 Lax Admissibility Condition
68
5.6 Kruzkov's Entropy Function
69
5.7 Well-Posedness
70
5.7.1 Solution Properties for Scalar Cauchy Problem
70
5.8 Oleinik Entropy Condition
71
5.8.1 Sup-Norm Decay of the Solution
71
5.9 Scalar Initial-Boundary Problem
72
5.9.1 Definition
73
6 Traffic Control 75
6.1 Scalar Conservation Law Solution
75
6.2 Dynamical Systems and Co-Semigroups
77
6.3 Optimal Control
78
6.3.1 Time Optimal Control
78
6.3.2 Cost Optimal Control
79
6.4 Optimal Flux Control for Scalar Conservation Law
80
6.4.1 Optimal Control in Space of Constant Controls
82
6.4.2 Optimal Control in Space of Sequentially Compact Smooth Open-Loop Controls
83
6.5 Feedback Control for Scalar Law
84
6.5.1 Advection Control
85
6.5.2 Diffusion Control
89
6.5.3 Advective-Diffusion Control
92
6.6 Advective Feedback Control for Relaxation Systems
95
6.6.1 Unbounded Advection for Relaxation Systems
98
6.6.2 Bounded Advection for Relaxation Systems
100
6.7 Wellposedness for Bounded Advection Control
100
6.7.1 Riemann Problems
103
6.7.2 Existence of Solution
110
7 Simulations for Advective Control 121
7.1 Godunov's Method
121
7.1.1 Matlab Code
123
7.2 Simulation Results for Advective Control
125
7.2.1 Unbounded Control Results
125
7.2.2 Bounded Control Results
125
8 Conclusions 137
8.1 Summary
137
8.2 Contributions
138
8.3 Future Work
138
References 141
Index 149
Author Biography 153
University of Nevada, Las Vegas, USA University of Nevada, Las Vegas, USA