Author Biographies |
|
xi | |
|
|
xiii | |
|
|
xix | |
|
|
1 | (16) |
|
|
1 | (1) |
|
|
2 | (3) |
|
1.3 Pedestrian Inertial Navigation |
|
|
5 | (4) |
|
|
6 | (1) |
|
1.3.2 IMU Mounting Positions |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.4 Aiding Techniques for Inertial Navigation |
|
|
9 | (4) |
|
1.4.1 Non-self-contained Aiding Techniques |
|
|
9 | (1) |
|
1.4.1.1 Aiding Techniques Based on Natural Signals |
|
|
9 | (1) |
|
1.4.1.2 Aiding Techniques Based on Artificial Signals |
|
|
10 | (1) |
|
1.4.2 Self-contained Aiding Techniques |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
13 | (4) |
|
2 Inertial Sensors and Inertial Measurement Units |
|
|
17 | (20) |
|
|
17 | (4) |
|
2.1.1 Static Accelerometers |
|
|
17 | (2) |
|
2.1.2 Resonant Accelerometers |
|
|
19 | (2) |
|
|
21 | (7) |
|
2.2.1 Mechanical Gyroscopes |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.2.2.1 Ring Laser Gyroscopes |
|
|
22 | (1) |
|
2.2.2.2 Fiber Optic Gyroscopes |
|
|
23 | (1) |
|
2.2.3 Nuclear Magnetic Resonance Gyroscopes |
|
|
24 | (1) |
|
2.2.4 MEMS Vibratory Gyroscopes |
|
|
24 | (1) |
|
2.2.4.1 Principle of Operation |
|
|
25 | (1) |
|
2.2.4.2 Mode of Operation |
|
|
25 | (2) |
|
|
27 | (1) |
|
2.3 Inertial Measurement Units |
|
|
28 | (4) |
|
2.3.1 Multi-sensor Assembly Approach |
|
|
28 | (1) |
|
2.3.2 Single-Chip Approach |
|
|
29 | (1) |
|
2.3.3 Device Folding Approach |
|
|
30 | (1) |
|
2.3.4 Chip-Stacking Approach |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (5) |
|
3 Strapdown Inertial Navigation Mechanism |
|
|
37 | (10) |
|
|
37 | (1) |
|
3.2 Navigation Mechanism in the Inertial Frame |
|
|
38 | (2) |
|
3.3 Navigation Mechanism in the Navigation Frame |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
42 | (1) |
|
|
43 | (1) |
|
3.4.3 Magnetic Heading Estimation |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (2) |
|
4 Navigation Error Analysis in Strapdown Inertial Navigation |
|
|
47 | (18) |
|
4.1 Error Source Analysis |
|
|
47 | (8) |
|
4.1.1 Inertial Sensor Errors |
|
|
48 | (3) |
|
|
51 | (2) |
|
4.1.3 Definition of IMU Grades |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (2) |
|
4.2.1 Six-Position Calibration |
|
|
55 | (2) |
|
4.2.2 Multi-position Calibration |
|
|
57 | (1) |
|
4.3 Error Accumulation Analysis |
|
|
57 | (5) |
|
4.3.1 Error Propagation in Two-Dimensional Navigation |
|
|
58 | (3) |
|
4.3.2 Error Propagation in Navigation Frame |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (2) |
|
5 Zero-Velocity Update Aided Pedestrian Inertial Navigation |
|
|
65 | (14) |
|
5.1 Zero-Velocity Update Overview |
|
|
65 | (3) |
|
5.2 Zero-Velocity Update Algorithm |
|
|
68 | (5) |
|
5.2.1 Extended Kalman Filter |
|
|
68 | (2) |
|
5.2.2 EKF in Pedestrian Inertial Navigation |
|
|
70 | (1) |
|
5.2.3 Zero-Velocity Update Implementation |
|
|
70 | (3) |
|
|
73 | (3) |
|
|
76 | (1) |
|
|
76 | (3) |
|
6 Navigation Error Analysis in the ZUPT-Aided Pedestrian Inertial Navigation |
|
|
79 | (24) |
|
6.1 Human Gait Biomechanical Model |
|
|
79 | (4) |
|
6.1.1 Foot Motion in Torso Frame |
|
|
80 | (1) |
|
6.1.2 Foot Motion in Navigation Frame |
|
|
80 | (1) |
|
6.1.3 Parameterization of Trajectory |
|
|
81 | (2) |
|
6.2 Navigation Error Analysis |
|
|
83 | (10) |
|
|
83 | (1) |
|
6.2.2 Covariance Increase During Swing Phase |
|
|
84 | (3) |
|
6.2.3 Covariance Decrease During the Stance Phase |
|
|
87 | (1) |
|
6.2.4 Covariance Level Estimation |
|
|
88 | (4) |
|
|
92 | (1) |
|
6.3 Verification of Analysis |
|
|
93 | (6) |
|
6.3.1 Numerical Verification |
|
|
93 | (1) |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
95 | (1) |
|
6.3.2 Experimental Verification |
|
|
96 | (3) |
|
6.4 Limitations of the ZUPT Aiding Technique |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (2) |
|
7 Navigation Error Reduction in the ZUPT-Aided Pedestrian Inertial Navigation |
|
|
103 | (18) |
|
7.1 IMU-Mounting Position Selection |
|
|
104 | (6) |
|
|
105 | (1) |
|
|
105 | (2) |
|
7.1.3 Data Processing Summary |
|
|
107 | (2) |
|
7.1.4 Experimental Verification |
|
|
109 | (1) |
|
7.2 Residual Velocity Calibration |
|
|
110 | (5) |
|
7.3 Gyroscope O-Sensitivity Calibration |
|
|
115 | (2) |
|
7.4 Navigation Error Compensation Results |
|
|
117 | (2) |
|
|
119 | (1) |
|
|
119 | (2) |
|
8 Adaptive ZUPT-Aided Pedestrian Inertial Navigation |
|
|
121 | (20) |
|
|
121 | (9) |
|
|
122 | (1) |
|
8.1.2 Algorithm Implementation |
|
|
123 | (1) |
|
|
123 | (1) |
|
8.1.2.2 Principal Component Analysis |
|
|
124 | (1) |
|
8.1.2.3 Artificial Neural Network |
|
|
125 | (2) |
|
8.1.2.4 Multiple Model EKF |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
130 | (1) |
|
8.2 Adaptive Stance Phase Detection |
|
|
130 | (8) |
|
8.2.1 Zero-Velocity Detector |
|
|
131 | (1) |
|
8.2.2 Adaptive Threshold Determination |
|
|
131 | (4) |
|
8.2.3 Experimental Verification |
|
|
135 | (1) |
|
|
136 | (2) |
|
|
138 | (1) |
|
|
139 | (2) |
|
9 Sensor Fusion Approaches |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (2) |
|
9.4 Multiple-IMU Approach |
|
|
145 | (1) |
|
|
146 | (1) |
|
9.5.1 Introduction to Ranging Techniques |
|
|
147 | (1) |
|
|
147 | (1) |
|
9.5.1.2 Received Signal Strength |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
9.5.2.1 Foot-to-Foot Ranging |
|
|
150 | (1) |
|
9.5.2.2 Directional Ranging |
|
|
150 | (3) |
|
9.5.3 Ultrawide Band Ranging |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (5) |
|
10 Perspective on Pedestrian Inertial Navigation Systems |
|
|
159 | (4) |
|
10.1 Hardware Development |
|
|
159 | (2) |
|
10.2 Software Development |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
Index |
|
163 | |