Muutke küpsiste eelistusi

E-raamat: Periodic Control of Power Electronic Converters

(Aalborg University, Denmark), (Nanyang Technological University, Singapore), (University of Glasgow, Scotland), (Aalborg University, Department of Energy Technology, Denmark)
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 13-Dec-2016
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849199339
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 208,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 13-Dec-2016
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849199339
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A key issue for power electronic converters is the ability to tackle periodic signals in electrical power processing to precisely and flexibly convert and regulate electrical power.



This book provides complete analysis and synthesis methods for periodic control systems. It covers the control, compensation, and filtering of periodic signals in power electronic power processing and proposes a unified framework for housing periodic control schemes for power converters, providing a general proportional-integral-derivative control solution to periodic signal compensation in extensive engineering applications - a perfect periodic control solution for power electronic conversion. It provides a number of demonstrative practical examples of the application of periodic control to: standalone constant-voltage-constant-frequency (CVCF) singlephase Pulse Width Modulation (PWM) inverters; standalone CVCF singlephase High Frequency Link (HFL) inverters; standalone CVCF three-phase PWM inverters; grid-connected single-phase inverters; grid-connected singlephase "Cycloconverter" type HFL rectifiers; grid-connected three-phase PWM inverters; programmable AC power sources; shunt active power filters; and UPS systems.



Periodic Control of Power Electronic Converters is of key importance for researchers and engineers in the field of power electronic converter systems and their applications, for control specialists exploring new applications of control theory in power electronics, and for advanced university students in these fields.
Preface ix
1 Introduction
1(26)
1.1 Background
1(9)
1.1.1 Trends in electrical power systems
1(2)
1.1.2 Role of power electronics
3(2)
1.1.3 Control of power electronic systems
5(5)
1.2 Periodic control of power converters
10(9)
1.2.1 Basic control problem for power converters
11(1)
1.2.2 Internal model principle (IMP)
12(3)
1.2.3 Internal model principle-based periodic control
15(2)
1.2.4 Periodic control of power converters
17(2)
1.3 What is in this book
19(8)
References
20(7)
2 Fundamental periodic control
27(32)
Abstract
27(1)
2.1 Repetitive control (RC)
27(12)
2.1.1 Internal model of any periodic signal
27(1)
2.1.2 Classic RC scheme
28(2)
2.1.3 Digital RC system and design
30(7)
2.1.4 Two alternative RC schemes
37(2)
2.2 Multiple resonant control (MRSC)
39(6)
2.2.1 Internal models of harmonics
39(1)
2.2.2 MRSC scheme
40(1)
2.2.3 Digital MRSC system and design
41(2)
2.2.4 RSC --- Generalized integrator for sinusoidal signals
43(2)
2.3 Discrete Fourier transform (DFT)-based RC
45(5)
2.3.1 DFT-based internal model of interested harmonics
45(2)
2.3.2 DFT-based RC scheme
47(1)
2.3.3 DFT-based RC system and design
48(1)
2.3.4 Modified DFT-based RC scheme
49(1)
2.4 Basis function
50(3)
2.5 Summary
53(6)
References
54(5)
3 Advanced periodic control for power harmonics mitigation
59(28)
Abstract
59(1)
3.1 Parallel structure repetitive control (PSRC)
59(12)
3.1.1 Complex internal model of selective harmonics
60(1)
3.1.2 Parallel structure RC
61(4)
3.1.3 Digital PSRC system and design
65(6)
3.2 Selective harmonic control (SHC)
71(8)
3.2.1 Real internal model of selective harmonics
71(2)
3.2.2 Selective harmonic control
73(1)
3.2.3 Digital SHC system and design
74(5)
3.3 Optimal harmonic control (OHC)
79(2)
3.3.1 Optimal harmonic control
79(1)
3.3.2 Digital OHC system and design
80(1)
3.4 Summary
81(6)
References
83(4)
4 Periodic control of power converters
87(66)
Abstract
87(1)
4.1 Periodic control (PC) of CVCF single-phase PWM inverters
87(21)
4.1.1 Background
87(1)
4.1.2 Modeling and control of single-phase PWM inverters
88(5)
4.1.3 Experimental validation
93(13)
4.1.4 Conclusion
106(2)
4.2 PC of CVCF single-phase high-frequency link (HFL) inverters
108(6)
4.2.1 Background
108(1)
4.2.2 Modeling and control of single-phase HFL inverters
109(2)
4.2.3 Experimental validation
111(2)
4.2.4 Conclusion
113(1)
4.3 PC of CVCF three-phase PWM inverters
114(9)
4.3.1 Background
114(2)
4.3.2 Modeling and control of CVCF three-phase PWM inverters
116(2)
4.3.3 Experimental validation
118(4)
4.3.4 Conclusion
122(1)
4.4 PC of grid-connected single-phase photovoltaic (PV) inverters
123(8)
4.4.1 Background
123(1)
4.4.2 Modeling and control of grid-connected single-phase PV inverters
124(3)
4.4.3 Experimental validation
127(3)
4.4.4 Conclusion
130(1)
4.5 PC of grid-connected single-phase HFL rectifiers
131(7)
4.5.1 Background
131(1)
4.5.2 Modeling and control of grid-connected single-phase "Cycloconverter" HFL rectifiers
132(3)
4.5.3 Experimental validation
135(3)
4.5.4 Conclusion
138(1)
4.6 PC of grid-connected three-phase PWM inverters
138(9)
4.6.1 Background
138(1)
4.6.2 Modeling and control of grid-connected three-phase PWM inverters
139(2)
4.6.3 Experimental validation
141(5)
4.6.4 Conclusion
146(1)
4.7 Summary
147(6)
References
147(6)
5 Frequency-adaptive periodic control
153(28)
Abstract
153(1)
5.1 Frequency-adaptive fundamental periodic control
154(9)
5.1.1 Resonant control (RSC)
154(1)
5.1.2 Direct frequency-adaptive RSC
155(2)
5.1.3 Delay-based classic repetitive control (CRC)
157(1)
5.1.4 Frequency-adaptive CRC with a fixed sampling rate
158(4)
5.1.5 Frequency-adaptive CRC system and design
162(1)
5.2 Frequency-adaptive advanced periodic control
163(4)
5.2.1 Frequency-adaptive parallel structure repetitive control (PSRC)
163(2)
5.2.2 Frequency-adaptive selective harmonic control (SHC)
165(1)
5.2.3 Frequency-adaptive optimal harmonic control (OHC)
166(1)
5.3 Frequency-adaptive discrete Fourier transform-based RC
167(5)
5.4 Fractional-order phase-lead compensator
172(2)
5.5 Summary
174(7)
References
175(6)
6 Frequency-adaptive periodic control of power converters
181(34)
Abstract
181(1)
6.1 Frequency-adaptive periodic control (FAPC) of programmable AC power sources
181(8)
6.1.1 Background
181(1)
6.1.2 Modeling and control of three-phase PWM inverters
182(2)
6.1.3 Experimental validation
184(4)
6.1.4 Conclusion
188(1)
6.2 FAPC of grid-connected PV inverters
189(10)
6.2.1 Background
189(1)
6.2.2 Modeling and control of grid-connected PV inverters
190(2)
6.2.3 Experimental validation
192(6)
6.2.4 Conclusion
198(1)
6.3 FAPC of shunt active power filters
199(10)
6.3.1 Background
199(1)
6.3.2 Modeling and control of shunt active power filters
200(4)
6.3.3 Experimental validation
204(5)
6.3.4 Conclusion
209(1)
6.4 Summary
209(6)
References
209(6)
7 Continuing developments of periodic control
215(30)
Abstract
215(1)
7.1 Periodic control for multi-period signals
215(5)
7.1.1 Digital multi-period repetitive control
215(3)
7.1.2 Multi-period resonant control
218(1)
7.1.3 Frequency-adaptive periodic control for multi-period signals
219(1)
7.2 Periodic signal filtering
220(20)
7.2.1 Notch and comb filters
221(6)
7.2.2 Digital notch and comb filters
227(1)
7.2.3 Discrete Fourier transform-based comb filter
228(1)
7.2.4 Frequency-adaptive notch and comb filters
229(4)
7.2.5 Periodic signal filtering for grid-connected converters
233(7)
7.3 Summary
240(5)
References
240(5)
Index 245
Keliang Zhou is a Senior Member of the IEEE, and a Senior Lecturer at the University of Glasgow, Scotland, where his research is focused on power electronics and electric drives, control theory and applications, renewable energy and distributed generation, and smart grid technologies.



Danwei Wang is a Senior Member of the IEEE, and Professor at Nanyang Technological University, Singapore. His research interests include health monitoring, fault diagnosis and prognosis for electrical machines, as well as robotics.



Yongheng Yang is an Assistant Professor at Aalborg University, Denmark. His research interests include renewable energy systems, power converter design, analysis and control, harmonics identification and mitigation, and reliability in power electronics.



Frede Blaabjerg is an IEEE Fellow and Professor in power electronics and drives at Aalborg University, Department of Energy Technology, Denmark. His research interests include power electronics, power converters, adjustable speed drives, control theory, process control, power quality, power electronics reliability as well as renewable energy like solar power and wind energy. He has published many journal papers and is among the most 250 cited in Engineering according to Thomson Reuter. He is the recipient of the IEEE William E. Newell Power Electronics award.