Muutke küpsiste eelistusi

E-raamat: Periodicities in Nonlinear Difference Equations

(University of Rhode Island, Kingston, USA), (University of Rhode Island, Kingston, USA)
  • Formaat: 392 pages
  • Ilmumisaeg: 16-Dec-2004
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9781420037722
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 392 pages
  • Ilmumisaeg: 16-Dec-2004
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9781420037722
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Sharkovsky's Theorem, Li and Yorke's "period 3 implies chaos" result, and the (3x+1) conjecture are beautiful and deep results that demonstrate the rich periodic character of first-order, nonlinear difference equations. To date, however, we still know surprisingly little about higher-order nonlinear difference equations.
With the results and discussions it presents, Periodicities in Nonlinear Difference Equations places a few more stones in the foundation of the basic theory of nonlinear difference equations. Researchers and graduate students working in difference equations and discrete dynamic systems will find much to intrigue them and inspire further work in this area.

Over the last ten years, Grove and Ladas (both: mathematics, U. of Rhode Island) have devoted their efforts to discovering periodicities in higher-order nonlinear difference equations. Aimed at researchers and graduate students, this monograph presents their findings while identifying some open problems and conjectures that merit further investigation. The authors also propose an examination of the global character of solutions of these equations for other values of their parameters, and suggest working toward a more complete picture of the global behavior of their solutions. Annotation ©2004 Book News, Inc., Portland, OR (booknews.com)

Sharkovsky's Theorem, Li and Yorke's "period three implies chaos" result, and the (3x+1) conjecture are beautiful and deep results that demonstrate the rich periodic character of first-order, nonlinear difference equations. To date, however, we still know surprisingly little about higher-order nonlinear difference equations.

During the last ten years, the authors of this book have been fascinated with discovering periodicities in equations of higher order which for certain values of their parameters have one of the following characteristics:

1. Every solution of the equation is periodic with the same period.
2. Every solution of the equation is eventually periodic with a prescribed period.
3. Every solution of the equation converges to a periodic solution with the same period.

This monograph presents their findings along with some thought-provoking questions and many open problems and conjectures worthy of investigation. The authors also propose investigation of the global character of solutions of these equations for other values of their parameters and working toward a more complete picture of the global behavior of their solutions.

With the results and discussions it presents, Periodicities in Nonlinear Difference Equations places a few more stones in the foundation of the basic theory of nonlinear difference equations. Researchers and graduate students working in difference equations and discrete dynamical systems will find much to intrigue them and inspire further work in this area.

Arvustused

"The advantage of the book is not only the presentation of new results, but also the formulation of many open problems and conjectures which shall stimulate further investigations of researchers and graduate students." - Lothar Berg, Zentralblatt MATH, 2006

Preliminaries. Equations with Periodic Solutions. Equations with Eventually Periodic Solutions. Convergence to Periodic Solutions. The Equation xn+1=. Max Equations with Periodic Solutions. Max Equations with Periodic Coefficients. Equations in the Spirit of the (3x+1) Conjecture. Bibliography. References.
E.A. Grove, G. Ladas