Muutke küpsiste eelistusi

E-raamat: Petroleum Production Engineering

(Professor, Petroleum Engineering Department, University of Louisiana, Lafayette and Director, Center for Optimization of Petroleum Systems (COPS), USA), (Senior Completion Engineering Advisor, USA), (Senior Modeling Engineer, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Feb-2017
  • Kirjastus: Gulf Professional Publishing
  • Keel: eng
  • ISBN-13: 9780128096123
  • Formaat - PDF+DRM
  • Hind: 136,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Feb-2017
  • Kirjastus: Gulf Professional Publishing
  • Keel: eng
  • ISBN-13: 9780128096123

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Petroleum Production Engineering, Second Edition, updates both the new and veteran engineer on how to employ day-to-day production fundamentals to solve real-world challenges with modern technology. Enhanced to include equations and references with today’s more complex systems, such as working with horizontal wells, workovers, and an entire new section of chapters dedicated to flow assurance, this go-to reference remains the most all-inclusive source for answering all upstream and midstream production issues.

Completely updated with five sections covering the entire production spectrum, including well productivity, equipment and facilities, well stimulation and workover, artificial lift methods, and flow assurance, this updated edition continues to deliver the most practical applied production techniques, answers, and methods for today’s production engineer and manager.

In addition, updated Excel spreadsheets that cover the most critical production equations from the book are included for download.

  • Updated to cover today’s critical production challenges, such as flow assurance, horizontal and multi-lateral wells, and workovers
  • Guides users from theory to practical application with the help of over 50 online Excel spreadsheets that contain basic production equations, such as gas lift potential, multilateral gas well deliverability, and production forecasting
  • Delivers an all-inclusive product with real-world answers for training or quick look up solutions for the entire petroleum production spectrum

Muu info

Updates both the new and veteran engineer on how to employ production fundamentals in petroleum engineering to solve real-world challenges
List of Figures xix
List of Tables xxvii
Preface xxxi
List of Symbols xxxiii
Part I Well Productivity
Chapter 1 Well Components
3(16)
1.1 Introduction
3(1)
1.2 Wellbore
3(1)
1.3 Wellhead
4(5)
1.4 Flowline
9(1)
1.5 Safety Control System
10(1)
1.6 Summary
11(6)
References
17(1)
Problem
17(2)
Chapter 2 Properties of Petroleum Fluids
19(18)
2.1 Introduction
19(1)
2.2 Properties of Oil
19(3)
2.2.1 Solution Gas-Oil Ratio
19(1)
2.2.2 Density of Oil
20(1)
2.2.3 Formation Volume Factor of Oil
20(1)
2.2.4 Viscosity of Oil
21(1)
2.2.5 Oil Compressibility
22(1)
2.3 Properties of Natural Gas
22(9)
2.3.1 Specific Gravity of Gas
22(1)
2.3.2 Gas Pseudo-Critical Pressure and Temperature
23(2)
2.3.3 Viscosity of Gas
25(2)
2.3.4 Gas Compressibility Factor
27(2)
2.3.5 Density of Gas
29(2)
2.3.6 Formation Volume Factor of Gas
31(1)
2.3.7 Gas Compressibility
31(1)
2.4 Properties of Produced Water
31(2)
2.4.1 Density, Specific Gravity, and Salinity
32(1)
2.4.2 Water Viscosity
32(1)
2.4.3 Water Formation Volume Factor
32(1)
2.4.4 Water Compressibility
32(1)
2.5 Interfacial Tension
33(1)
2.6 Summary
34(1)
References
34(1)
Problem
35(2)
Chapter 3 Reservoir Deliverability
37(46)
3.1 Introduction
37(1)
3.2 Vertical Wells
37(8)
3.2.1 Transient Flow
37(2)
3.2.2 Steady-State Flow
39(1)
3.2.3 Pseudo-Steady-State Flow
40(2)
3.2.4 Hydraulic-Fractured Wells
42(3)
3.3 Horizontal Wells
45(5)
3.3.1 Nonfractured Wells
45(1)
3.3.2 Single-Fractured Wells
46(1)
3.3.3 Multistage Fractured Wells
46(4)
3.4 Multilateral Wells
50(3)
3.5 Inflow Performance Relationship
53(9)
3.5.1 IPR for Single (Liquid)-Phase Reservoirs
53(4)
3.5.2 IPR for Two-Phase Reservoirs
57(2)
3.5.3 IPR for Partial Two-Phase Oil Reservoirs
59(3)
3.6 Construction of IPR Curves Using Test Points
62(6)
3.7 Composite IPR of Stratified Reservoirs
68(5)
3.7.1 Composite IPR Models
68(5)
3.8 Future IPR
73(5)
3.8.1 Vogel's Method
74(2)
3.8.2 Fetkovich' s Method
76(2)
3.9 Summary
78(1)
References
78(2)
Problem
80(3)
Chapter 4 Wellbore Flow Performance
83(28)
4.1 Introduction
83(1)
4.2 Single-Phase Liquid Flow
83(4)
4.3 Single-Phase Gas Flow
87(7)
4.3.1 Average Temperature and Compressibility Factor Method
88(1)
4.3.2 Cullender and Smith Method
89(3)
4.3.3 Flow of Impure Gas
92(2)
4.4 Multiphase Flow in Oil Wells
94(10)
4.4.1 Flow Regimes
95(2)
4.4.2 Liquid Holdup
97(1)
4.4.3 TPR Models
97(7)
4.5 Summary
104(2)
References
106(1)
Problem
107(4)
Chapter 5 Choke Performance
111(18)
5.1 Introduction
111(1)
5.2 Sonic and Subsonic Flow
111(1)
5.3 Single-Phase Liquid Flow
112(2)
5.4 Single-Phase Gas Flow
114(6)
5.4.1 Subsonic Flow
114(1)
5.4.2 Sonic Flow
115(1)
5.4.3 Temperature at Choke
115(1)
5.4.4 Applications
116(4)
5.5 Multiphase Flow
120(1)
5.5.1 Critical (Sonic) Flow
120(5)
5.5.2 Subcriticai (Subsonic) Flow
121(4)
5.6 Summary
125(1)
References
125(2)
Problem
127(2)
Chapter 6 Well Deliverability
129(50)
6.1 Introduction
129(1)
6.2 Principle of Nodal Analysis
129(2)
6.3 Deliverability of Vertical Wells
131(18)
6.3.1 Analysis With the Bottom-Hole Node
131(6)
6.3.2 Analysis With Wellhead Node
137(12)
6.4 Deliverability of Horizontal Wells
149(10)
6.4.1 Non-Fractured Horizontal Wells
149(5)
6.4.2 Single-Fractured Horizontal Wells
154(1)
6.4.3 Multi-Stage-Fractured Horizontal Wells
154(5)
6.5 Deliverability of Multilateral Wells
159(11)
6.5.1 Fishbone Wells
159(2)
6.5.2 Root Wells
161(9)
6.6 Summary
170(1)
References
170(1)
Problem
170(9)
Chapter 7 Forecast of Well Production
179(18)
7.1 Introduction
179(1)
7.2 Oil Production During Transient Flow Period
179(1)
7.3 Oil Production During Pseudo-Steady Flow Period
180(7)
7.3.1 Oil Production During Single-Phase Flow Period
182(1)
7.3.2 Oil Production During Two-Phase Flow Period
183(4)
7.4 Gas Production During Transient Flow Period
187(1)
7.5 Gas Production During Pseudo-Steady-State Flow Period
188(4)
7.6 Production Forecast Through Reservoir Simulation
192(2)
7.7 Summary
194(1)
References
194(1)
Problem
194(3)
Chapter 8 Production Decline Analysis
197(22)
8.1 Introduction
197(1)
8.2 Exponential Decline
197(6)
8.2.1 Relative Decline Rate
197(2)
8.2.2 Production Rate Decline
199(1)
8.2.3 Cumulative Production
199(1)
8.2.4 Determination of Decline Rate
200(1)
8.2.5 Effective Decline Rate
201(2)
8.3 Harmonic Decline
203(1)
8.4 Hyperbolic Decline
203(1)
8.5 Model Identification
204(2)
8.6 Determination of Model Parameters
206(1)
8.7 Illustrative Examples
207(6)
8.8 Summary
213(1)
References
213(1)
Problem
214(5)
Part II Surface And Downhole Equipment
Chapter 9 Well Tubing and Packers
219(24)
9.1 Introduction
219(1)
9.2 Wellhead-Tubing-Packer Relation
219(1)
9.3 Tubing Design
219(13)
9.3.1 Tension, Collapse, and Burst Design
224(1)
9.3.2 Buckling Prevention During Production
225(1)
9.3.3 Considerations for Well Treatment and Stimulation
226(6)
9.4 Production Packers
232(8)
9.4.1 Conventional Packers
233(5)
9.4.2 Swellable Packers
238(1)
9.4.3 Selection of Packers
239(1)
9.5 Summary
240(1)
References
240(1)
Problem
241(2)
Chapter 10 Separation Systems
243(32)
10.1 Introduction
243(1)
10.2 Separation System
243(16)
10.2.1 Principles of Separation
243(1)
10.2.2 Types of Separators
244(3)
10.2.3 Factors Affecting Separation
247(6)
10.2.4 Selection of Separators
253(6)
10.3 Dehydration Systems
259(14)
10.3.1 Water Content of Natural Gas Streams
259(2)
10.3.2 Methods of Dehydration
261(12)
10.4 Summary
273(1)
References
273(1)
Problem
273(2)
Chapter 11 Transportation Systems
275(54)
11.1 Introduction
275(1)
11.2 Pumps
275(5)
11.2.1 Triplex Pumps
275(3)
11.2.2 Duplex Pumps
278(2)
11.3 Compressors
280(16)
11.3.1 Types of Compressors
281(2)
11.3.2 Reciprocating Compressors
283(10)
11.3.3 Centrifugal Compressors
293(3)
11.4 Pipelines
296(27)
11.4.1 Flow in Pipelines
297(11)
11.4.2 Design of Pipelines
308(15)
11.5 Summary
323(1)
References
323(1)
Problem
324(5)
Part III Well Stimulation And Workover
Chapter 12 Well Problem Identification
329(38)
12.1 Introduction
329(1)
12.2 Low Productivity
329(10)
12.2.1 Pressure Transient Data Analysis
330(9)
12.3 Excessive Gas Production
339(1)
12.4 Excessive Water Production
339(5)
12.5 Liquid Loading of Gas Wells
344(8)
12.5.1 The Turner et al. Method
345(2)
12.5.2 The Guo et al. Method
347(5)
12.5.3 Comparison of the Turner et al. and the Guo et al. Methods
352(1)
12.6 Formation Damage
352(12)
12.6.1 Damage Sources
353(4)
12.6.2 Formation Damage From Various Oilfield Operations
357(2)
12.6.3 Damage Evaluation
359(2)
12.6.4 Damage Prevention and Control
361(3)
12.7 Summary
364(1)
References
364(2)
Problem
366(1)
Chapter 13 Acidizing
367(22)
13.1 Introduction
367(1)
13.2 Acid Types
367(2)
13.2.1 Mineral Acids
367(1)
13.2.2 Organic Acids
368(1)
13.2.3 Retarded Acids
368(1)
13.3 Candidate Selection
369(1)
13.4 Acid-Rock Interaction
369(2)
13.4.1 Chemical Reactions
369(1)
13.4.2 Dissolving Power of Acids
370(1)
13.4.3 Reaction Kinetics
370(1)
13.5 Sandstone Acidizing Design
371(5)
13.5.1 Selection of Acid
371(1)
13.5.2 Acid Volume Requirement
371(3)
13.5.3 Acid Injection Rate and Pressure
374(2)
13.6 Carbonate Acidizing Design
376(7)
13.6.1 Selection of Acid
376(2)
13.6.2 Wormhole Penetration and Growth
378(2)
13.6.3 Acidizing Design for Carbonate
380(2)
13.6.4 Acid Fracturing
382(1)
13.7 Acid Diversion
383(1)
13.7.1 Mechanical Diversion Methods
383(1)
13.7.2 Chemical Diversion Methods
384(1)
13.8 Acid Placement Diagnosis
384(1)
13.9 Summary
385(1)
References
385(1)
Problem
386(3)
Chapter 14 Hydraulic Fracturing
389(114)
14.1 Introduction
389(1)
14.2 Basic Rock Mechanics
390(11)
14.2.1 Basic Definitions
390(3)
14.2.2 Fracture Modes and Fracture Toughness
393(1)
14.2.3 Principal Stresses
394(2)
14.2.4 Overburden, Horizontal and Effective Stresses
396(1)
14.2.5 Faults and Tectonic Stresses
397(1)
14.2.6 Minimum Horizontal Stress
398(1)
14.2.7 Formation Breakdown Around the Wellbore
399(2)
14.3 Hydraulic Fracture Geometry Overview
401(1)
14.4 Hydraulic Fracture Models
402(26)
14.4.1 Fluid Leakoff Models
403(3)
14.4.2 Two-Dimensional Fracture Models
406(9)
14.4.3 Three-Dimensional Fracture Models
415(3)
14.4.4 Unconventional Fracture Models
418(5)
14.4.5 Proppant Transport Models
423(1)
14.4.6 Acid Fracturing Models
424(2)
14.4.7 Summary of Hydraulic Fracture Models
426(2)
14.5 Fracturing Pressure Analysis
428(10)
14.5.1 Fracturing Pressure Characteristics
428(2)
14.5.2 Observed Net Pressure Calculation
430(3)
14.5.3 Diagnostic Rate Test Analysis
433(2)
14.5.4 Pressure Decline Analysis
435(3)
14.6 Fracturing Materials and Equipment
438(21)
14.6.1 Fracturing Fluids
438(10)
14.6.2 Proppants
448(5)
14.6.3 Fracturing Equipment
453(6)
14.7 Fractured Well Productivity
459(3)
14.8 Fracturing Treatment Design
462(17)
14.8.1 Candidate Well Selection
463(1)
14.8.2 Fracturing Fluid Selection Considerations
463(1)
14.8.3 Proppant Selection Considerations
464(2)
14.8.4 Collection and Validation of Reservoir Properties
466(2)
14.8.5 Fracture Model Selection and Calibration
468(1)
14.8.6 Treatment Procedure and Schedule
468(8)
14.8.7 Treatment Pressure and Horsepower Estimation
476(2)
14.8.8 Treatment Design Optimization
478(1)
14.9 Frac-Pack Treatments
479(3)
14.10 Fracturing Horizontal Wells
482(7)
14.10.1 Transverse and Longitudinal Fractures
482(1)
14.10.2 Horizontal Well Completion Options
483(4)
14.10.3 Treatment Design Considerations
487(2)
14.11 Fracturing Treatment Evaluation
489(6)
14.11.1 Net Pressure Analysis
489(2)
14.11.2 Pressure Transient Analysis
491(1)
14.11.3 Far-Field Diagnostic Techniques
492(3)
14.12 Summary
495(1)
References
495(5)
Problem
500(3)
Chapter 15 Well Workover
503(12)
15.1 Introduction
503(1)
15.2 Types of Workovers
503(1)
15.3 Workover Considerations
504(1)
15.4 Workover Equipment
504(1)
15.5 Engineering Calculations
505(5)
15.5.1 Force Transfer in Workover Strings
505(3)
15.5.2 Workover Fluid Flow Rate Requirement
508(2)
15.6 Summary
510(1)
References
510(1)
Problem
511(4)
Part IV Artificial Lift Methods
Chapter 16 Sucker Rod Pumping
515(34)
16.1 Introduction
515(1)
16.2 Pumping System
515(3)
16.3 Polished Rod Motion
518(7)
16.3.1 Conventional Pumping Unit
518(3)
16.3.2 Air-Balanced Pumping Unit
521(4)
16.4 Load to the Pumping Unit
525(6)
16.4.1 Maximum PRL
525(1)
16.4.2 Minimum PRL
526(1)
16.4.3 Counterweights
527(1)
16.4.4 Peak Torque and Speed Limit
528(1)
16.4.5 Tapered Rod Strings
529(2)
16.5 Pump Deliverability and Power Requirements
531(5)
16.5.1 Effective Plunger Stroke Length
531(3)
16.5.2 Volumetric Efficiency
534(1)
16.5.3 Power Requirements
535(1)
16.6 Procedure for Pumping Unit Selection
536(5)
16.7 Principles of Pump Performance Analysis
541(6)
16.8 Summary
547(1)
References
547(1)
Problem
547(2)
Chapter 17 Gas Lift
549(54)
17.1 Introduction
549(1)
17.2 Gas Lift System
549(3)
17.3 Evaluation of Gas Lift Potential
552(5)
17.4 Gas Lift Gas Compression Requirements
557(17)
17.4.1 Gas Flow Rate Requirement
557(1)
17.4.2 Output Gas Pressure Requirement
558(4)
17.4.3 Compression Power Requirement
562(12)
17.5 Selection of Gas Lift Valves
574(17)
17.5.1 Unloading Sequence
574(1)
17.5.2 Valve Characteristics
574(9)
17.5.3 Valve Spacing
583(4)
17.5.4 Valve Selection and Testing
587(4)
17.6 Special Issues in Intermittent-Flow Gas Lift
591(4)
17.7 Design of Gas Lift Installations
595(3)
17.8 Summary
598(1)
References
598(1)
Problem
598(5)
Chapter 18 Other Artificial Lift Methods
603(36)
18.1 Introduction
603(1)
18.2 Electrical Submersible Pump
603(6)
18.2.1 Principle
604(3)
18.2.2 ESP Applications
607(2)
18.3 Hydraulic Piston Pumping
609(5)
18.4 Progressive Cavity Pumping
614(5)
18.4.1 Down-Hole PCP Characteristics
616(2)
18.4.2 Selection of Down-Hole PCP
618(1)
18.4.3 Selection of Drive String
618(1)
18.4.4 Selection of Surface Driver
619(1)
18.5 Plunger Lift
619(11)
18.5.1 Working Principle
621(3)
18.5.2 Design Guideline
624(6)
18.6 Hydraulic Jet Pumping
630(4)
18.6.1 Working Principle
630(1)
18.6.2 Technical Parameters
631(1)
18.6.3 Selection of Jet Pumps
632(2)
18.7 Summary
634(1)
References
634(1)
Problem
635(4)
Part V Flow Assurance
Chapter 19 Pipeline Precommissioning and Testing
639(10)
19.1 Introduction
639(1)
19.2 Pipeline Flooding, Cleaning, and Gauging Operations
640(2)
19.3 Pipeline Hydrotesting and Leak Testing
642(1)
19.4 Pipeline Dewatering, Drying, and Purging
643(3)
19.5 Summary
646(1)
References
646(1)
Problem
647(2)
Chapter 20 Gas Hydrate Control
649(14)
20.1 Introduction
649(1)
20.2 Hydrate Forming Condition
649(2)
20.3 Hydrate Prevention and Mitigation
651(10)
20.3.1 Water Removal
651(4)
20.3.2 Chemical Inhibition
655(4)
20.3.3 Thermal Insulation and Heating
659(2)
20.3.4 System Depressurization
661(1)
20.4 Summary
661(1)
References
661(1)
Problem
662(1)
Chapter 21 Other Flow Assurance Issues
663(38)
21.1 Introduction
663(1)
21.2 Fluid Sampling and Characterizations
663(2)
21.2.1 Fluid Sampling
664(1)
21.2.2 PVT Measurements
664(1)
21.3 Flow Assurance Analysis
665(31)
21.3.1 Fluid Characterizations
666(1)
21.3.2 Impacts of Produced Water on Flow Assurance
666(2)
21.3.3 Wax Depositions
668(4)
21.3.4 Asphaltene Depositions
672(8)
21.3.5 Inorganic Precipitates-Scales
680(5)
21.3.6 Corrosion
685(5)
21.3.7 Severe Slugging
690(6)
21.4 Summary
696(1)
References
696(3)
Problem
699(2)
Chapter 22 Pipeline Pigging
701(20)
22.1 Introduction
701(1)
22.2 Pigging System
701(8)
22.2.1 Utility Pigs
702(3)
22.2.2 In-Line Inspection Tools
705(1)
22.2.3 Gel Pigs
706(1)
22.2.4 Launcher and Receiver
707(2)
22.3 Selection of Pigs
709(5)
22.3.1 Cleaning Pigs
710(1)
22.3.2 Gauging Pigs
711(1)
22.3.3 Caliper Pigs
711(1)
22.3.4 Displacement Pigs
711(1)
22.3.5 Profile Pig
712(1)
22.3.6 Transmitter Pigs
713(1)
22.3.7 Special Pigs
713(1)
22.4 Major Applications
714(3)
22.4.1 Construction
714(1)
22.4.2 Operation
715(1)
22.4.3 Inspection
716(1)
22.4.4 Maintenance
716(1)
22.5 Pigging Procedure
717(2)
22.5.1 Pressure and Flow Rate
717(1)
22.5.2 Prerun Inspection
717(1)
22.5.3 Pig Launching and Receiving
717(2)
22.5.4 Freeing a "Stuck" Pig
719(1)
22.6 Summary
719(1)
References
720(1)
Problem
720(1)
Appendix A: Unit Conversion Factors 721(2)
Appendix B: The Minimum Performance Properties of API Tubing 723(4)
Index 727
Boyun Guo is a Professor at the University of Louisiana at Lafayette in the Petroleum Engineering Department and Director of the Center for Optimization of Petroleum Systems (COPS) of the Energy Institute of Louisiana (EIL). He has 40 years of work experience in the oil and gas industry and academia. He is the principal author of 11 books and author/coauthor of over 150 research papers. He holds a BS degree in Engineering Science from Daqing Petroleum Institute in China, MS degree in Petroleum Engineering from Montana College of Mineral Science and Technology, and a PhD degree in Petroleum Engineering from New Mexico Institute of Mining and Technology. Xinghui Liu is currently a Senior Completion Engineering Advisor with a major oil company, specializing in well completion and hydraulic fracturing design in shale and tight unconventional plays. He has over 30 years of work experience, and has previously worked for Halliburton, Pinnacle, RES, Indiana University and PetroChina. He possesses in-depth understanding of hydraulic fracture complexities and characteristics across different shale and tight oil/gas plays, and has provided fracture design and execution with a strong focus on post completion evaluation and optimization via integration of diagnostic technologies including microseismic, tiltmeter, and fiber optic DTS/DAS monitoring in many fields worldwide. He earned several degrees in Petroleum Engineering, including a BS from Daqing Petroleum Institute, an MS from Montana Tech, and a PhD from the University of Oklahoma. He has authored and co-authored numerous technical papers on a variety of subjects including fracture design and optimization, fracture monitoring, fracture performance evaluation, geochemical modeling, acidizing, formation damage control, gravel packing, and Non-Darcy flow analysis. Xuehao Tan is currently a Senior Modeling and Simulation Engineer specializing on acidizing modeling, temperature simulation in the wellbore and reservoir, applications of coiled tubing and acid fracturing. Previously, he worked for Texas A&M University as a Research Assistant in their Petroleum Engineering department. Xuehao earned a BE in Engineering Mechanics from Tsinghua University, a MS and PhD both in Petroleum Engineering and both from Texas A&M University. He is active in SPE and serves as technical reviewers for several journals related to production engineering. He has published many SPE papers on temperature simulation, acidizing modeling and related topics. Xuehao was awarded the Faculty Award of Excellence from Texas A&M University in 2013.