Muutke küpsiste eelistusi

E-raamat: Petroleum Production Systems

  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Sep-2012
  • Kirjastus: Pearson
  • Keel: eng
  • ISBN-13: 9780137033287
  • Formaat - PDF+DRM
  • Hind: 118,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Sep-2012
  • Kirjastus: Pearson
  • Keel: eng
  • ISBN-13: 9780137033287

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Definitive Guide to Petroleum Production Systems–Now Fully Updated With the Industry’s Most Valuable New Techniques

Petroleum Production Systems, Second Edition, is the comprehensive source for clear and fundamental methods for about modern petroleum production engineering practice. Written by four leading experts, it thoroughly introduces modern principles of petroleum production systems design and operation, fully considering the combined behavior of reservoirs, surface equipment, pipeline systems, and storage facilities. Long considered the definitive text for production engineers, this edition adds extensive new coverage of hydraulic fracturing, with emphasis on well productivity optimization. It presents new chapters on horizontal wells and well performance evaluation, including production data analysis and sand management.

This edition features

  • A structured approach spanning classical production engineering, well testing, production logging, artificial lift, and matrix and hydraulic fracture stimulation
  • Revisions throughout to reflect recent innovations and extensive feedback from both students and colleagues
  • Detailed coverage of modern best practices and their rationales
  • Unconventional oil and gas well design
  • Many new examples and problems
  • Detailed data sets for three characteristic reservoir types: an undersaturated oil reservoir, a saturated oil reservoir, and a gas reservoir

Foreword xv
Preface xvii
About the Authors xix
Chapter 1 The Role of Petroleum Production Engineering
1(18)
1.1 Introduction
1(1)
1.2 Components of the Petroleum Production System
2(9)
1.2.1 Volume and Phase of Reservoir Hydrocarbons
2(6)
1.2.2 Permeability
8(1)
1.2.3 The Zone near the Well, the Sandface, and the Well Completion
9(1)
1.2.4 The Well
10(1)
1.2.5 The Surface Equipment
11(1)
1.3 Well Productivity and Production Engineering
11(4)
1.3.1 The Objectives of Production Engineering
11(3)
1.3.2 Organization of the Book
14(1)
1.4 Units and Conversions
15(4)
References
18(1)
Chapter 2 Production from Undersaturated Oil Reservoirs
19(22)
2.1 Introduction
19(1)
2.2 Steady-State Well Performance
19(5)
2.3 Transient Flow of Undersaturated Oil
24(2)
2.4 Pseudosteady-State Flow
26(4)
2.4.1 Transition to Pseudosteady State from Infinite Acting Behavior
29(1)
2.5 Wells Draining Irregular Patterns
30(4)
2.6 Inflow Performance Relationship
34(3)
2.7 Effects of Water Production, Relative Permeability
37(2)
2.8 Summary of Single-Phase Oil Inflow Performance Relationships
39(2)
References
39(1)
Problems
39(2)
Chapter 3 Production from Two-Phase Reservoirs
41(20)
3.1 Introduction
41(1)
3.2 Properties of Saturated Oil
42(11)
3.2.1 General Properties of Saturated Oil
42(5)
3.2.2 Property Correlations for Two-Phase Systems
47(6)
3.3 Two-Phase Flow in a Reservoir
53(2)
3.4 Oil Inflow Performance for a Two-Phase Reservoir
55(1)
3.5 Generalized Vogel Inflow Performance
56(1)
3.6 Fetkovich's Approximation
57(4)
References
58(1)
Problems
58(3)
Chapter 4 Production from Natural Gas Reservoirs
61(34)
4.1 Introduction
61(5)
4.1.1 Gas Gravity
61(2)
4.1.2 Real Gas Law
63(3)
4.2 Correlations and Useful Calculations for Natural Gases
66(10)
4.2.1 Pseudocritical Properties from Gas Gravity
66(2)
4.2.2 Presence of Nonhydrocarbon Gases
68(1)
4.2.3 Gas Compressibility Factor Correction for Nonhydrocarbon Gases
68(3)
4.2.4 Gas Viscosity
71(3)
4.2.5 Gas Formation Volume Factor
74(1)
4.2.6 Gas Isothermal Compressibility
75(1)
4.3 Approximation of Gas Well Deliverability
76(3)
4.4 Gas Well Deliverability for Non-Darcy Flow
79(5)
4.5 Transient Flow of a Gas Well
84(11)
References
91(2)
Problems
93(2)
Chapter 5 Production from Horizontal Wells
95(26)
5.1 Introduction
95(2)
5.2 Steady-State Well Performance
97(6)
5.2.1 The Joshi Model
97(3)
5.2.2 The Furui Model
100(3)
5.3 Pseudosteady-State Flow
103(11)
5.3.1 The Babu and Odeh Model
103(6)
5.3.2 The Economides et al. Model
109(5)
5.4 Inflow Performance Relationship for Horizontal Gas Wells
114(1)
5.5 Two-Phase Correlations for Horizontal Well Inflow
115(1)
5.6 Multilateral Well Technology
116(5)
References
117(2)
Problems
119(2)
Chapter 6 The Near-Wellbore Condition and Damage Characterization; Skin Effects
121(46)
6.1 Introduction
121(1)
6.2 Hawkins' Formula
122(4)
6.3 Skin Components for Vertical and Inclined Wells
126(2)
6.4 Skin from Partial Completion and Well Deviation
128(6)
6.5 Horizontal Well Damage Skin Effect
134(4)
6.6 Well Completion Skin Factors
138(13)
6.6.1 Cased, Perforated Completions
138(8)
6.6.2 Slotted or Perforated Liner Completions
146(2)
6.6.3 Gravel Pack Completions
148(3)
6.7 Formation Damage Mechanisms
151(6)
6.7.1 Particle Plugging of Pore Spaces
151(3)
6.7.2 Mechanisms for Fines Migration
154(1)
6.7.3 Chemical Precipitation
154(1)
6.7.4 Fluid Damage: Emulsions, Relative Permeability, and Wettability Changes
155(1)
6.7.5 Mechanical Damage
156(1)
6.7.6 Biological Damage
157(1)
6.8 Sources of Formation Damage During Well Operations
157(10)
6.8.1 Drilling Damage
157(2)
6.8.2 Completion Damage
159(2)
6.8.3 Production Damage
161(1)
6.8.4 Injection Damage
162(1)
References
163(2)
Problems
165(2)
Chapter 7 Wellbore Flow Performance
167(50)
7.1 Introduction
167(1)
7.2 Single-Phase Flow of an Incompressible, Newtonian Fluid
168(11)
7.2.1 Laminar or Turbulent Flow
168(1)
7.2.2 Velocity Profiles
169(3)
7.2.3 Pressure-Drop Calculations
172(7)
7.2.4 Annular Flow
179(1)
7.3 Single-Phase Flow of a Compressible, Newtonian Fluid
179(5)
7.4 Multiphase Flow in Wells
184(33)
7.4.1 Holdup Behavior
185(2)
7.4.2 Two-Phase Flow Regimes
187(4)
7.4.3 Two-Phase Pressure Gradient Models
191(19)
7.4.4 Pressure Traverse Calculations
210(4)
References
214(1)
Problems
215(2)
Chapter 8 Flow in Horizontal Wellbores, Wellheads, and Gathering Systems
217(44)
8.1 Introduction
217(1)
8.2 Flow in Horizontal Pipes
217(19)
8.2.1 Single-Phase Flow: Liquid
217(1)
8.2.2 Single-Phase Flow: Gas
218(2)
8.2.3 Two-Phase Flow
220(16)
8.2.4 Pressure Drop through Pipe Fittings
236(1)
8.3 Flow through Chokes
236(11)
8.3.1 Single-Phase Liquid Flow
240(1)
8.3.2 Single-Phase Gas Flow
241(2)
8.3.3 Gas-Liquid Flow
243(4)
8.4 Surface Gathering Systems
247(3)
8.5 Flow in Horizontal Wellbores
250(11)
8.5.1 Importance of Wellbore Pressure Drop
250(2)
8.5.2 Wellbore Pressure Drop for Single-Phase Flow
252(1)
8.5.3 Wellbore Pressure Drop for Two-Phase Flow
252(4)
References
256(2)
Problems
258(3)
Chapter 9 Well Deliverability
261(14)
9.1 Introduction
261(1)
9.2 Combination of Inflow Performance Relationship (IPR) and Vertical Flow Performance (VFP)
262(6)
9.3 IPR and VFP of Two-Phase Reservoirs
268(2)
9.4 IPR and VFP in Gas Reservoirs
270(5)
Problems
274(1)
Chapter 10 Forecast of Well Production
275(24)
10.1 Introduction
275(1)
10.2 Transient Production Rate Forecast
275(2)
10.3 Material Balance for an Undersaturated Reservoir and Production Forecast Under Pseudosteady-State Conditions
277(4)
10.4 The General Material Balance for Oil Reservoirs
281(5)
10.4.1 The Generalized Expression
281(1)
10.4.2 Calculation of Important Reservoir Variables
282(4)
10.5 Production Forecast from a Two-Phase Reservoir: Solution Gas Drive
286(8)
10.6 Gas Material Balance and Forecast of Gas Well Performance
294(5)
References
296(1)
Problems
297(2)
Chapter 11 Gas Lift
299(36)
11.1 Introduction
299(1)
11.2 Well Construction for Gas Lift
299(4)
11.3 Continuous Gas-Lift Design
303(7)
11.3.1 Natural versus Artificial Flowing Gradient
303(1)
11.3.2 Pressure of Injected Gas
304(1)
11.3.3 Point of Gas Injection
305(4)
11.3.4 Power Requirements for Gas Compressors
309(1)
11.4 Unloading Wells with Multiple Gas-Lift Valves
310(2)
11.5 Optimization of Gas-Lift Design
312(4)
11.5.1 Impact of Increase of Gas Injection Rate, Sustaining of Oil Rate with Reservoir Pressure Decline
312(2)
11.5.2 Maximum Production Rate with Gas Lift
314(2)
11.6 Gas-Lift Performance Curve
316(12)
11.7 Gas-Lift Requirements versus Time
328(7)
References
332(1)
Problems
333(2)
Chapter 12 Pump-Assisted Lift
335(30)
12.1 Introduction
335(3)
12.2 Positive-Displacement Pumps
338(16)
12.2.1 Sucker Rod Pumping
338(14)
12.2.2 Progressing Cavity Pumps
352(2)
12.3 Dynamic Displacement Pumps
354(5)
12.3.1 Electrical Submersible Pumps
354(5)
12.4 Lifting Liquids in Gas Wells; Plunger Lift
359(6)
References
362(1)
Problems
362(3)
Chapter 13 Well Performance Evaluation
365(78)
13.1 Introduction
365(1)
13.2 Open-Hole Formation Evaluation
366(2)
13.3 Cased Hole Logs
368(19)
13.3.1 Cement Evaluation
368(1)
13.3.2 Cased Hole Formation Evaluation
369(1)
13.3.3 Production Log Evaluation
370(17)
13.4 Transient Well Analysis
387(56)
13.4.1 Rate Transient Analysis
387(3)
13.4.2 Wireline Formation Testing and Formation Fluid Sampling
390(3)
13.4.3 Well Rate and Pressure Transient Analysis
393(7)
13.4.4 Flow Regime Analysis
400(38)
References
438(1)
Problems
439(4)
Chapter 14 Matrix Acidizing: Acid/Rock Interactions
443(26)
14.1 Introduction
443(3)
14.2 Acid-Mineral Reaction Stoichiometry
446(7)
14.3 Acid-Mineral Reaction Kinetics
453(7)
14.3.1 Laboratory Measurement of Reaction Kinetics
454(1)
14.3.2 Reactions of HCI and Weak Acids with Carbonates
454(1)
14.3.3 Reaction of HF with Sandstone Minerals
455(5)
14.3.4 Reactions of Fluosilicic Acid with Sandstone Minerals
460(1)
14.4 Acid Transport to the Mineral Surface
460(1)
14.5 Precipitation of Acid Reaction Products
461(8)
References
464(2)
Problems
466(3)
Chapter 15 Sandstone Acidizing Design
469(50)
15.1 Introduction
469(1)
15.2 Acid Selection
470(2)
15.3 Acid Volume and Injection Rate
472(24)
15.3.1 Competing Factors Influencing Treatment Design
472(1)
15.3.2 Sandstone Acidizing Models
472(14)
15.3.3 Monitoring the Acidizing Process, the Optimal Rate Schedule
486(10)
15.4 Fluid Placement and Diversion
496(13)
15.4.1 Mechanical Acid Placement
496(1)
15.4.2 Ball Sealers
497(1)
15.4.3 Particulate Diverting Agents
497(11)
15.4.4 Viscous Diversion
508(1)
15.5 Preflush and Postflush Design
509(3)
15.5.1 The HCI Preflush
509(2)
15.5.2 The Postflush
511(1)
15.6 Acid Additives
512(1)
15.7 Acidizing Treatment Operations
512(7)
References
513(3)
Problems
516(3)
Chapter 16 Carbonate Acidizing Design
519(40)
16.1 Introduction
519(3)
16.2 Wormhole Formation and Growth
522(3)
16.3 Wormhole Propagation Models
525(10)
16.3.1 The Volumetric Model
526(3)
16.3.2 The Buijse-Glasbergen Model
529(2)
16.3.3 The Furui et al. Model
531(4)
16.4 Matrix Acidizing Design for Carbonates
535(6)
16.4.1 Acid Type and Concentration
535(1)
16.4.2 Acid Volume and Injection Rate
536(2)
16.4.3 Monitoring the Acidizing Process
538(2)
16.4.4 Fluid Diversion in Carbonates
540(1)
16.5 Acid Fracturing
541(13)
16.5.1 Acid Penetration in Fractures
542(3)
16.5.2 Acid Fracture Conductivity
545(7)
16.5.3 Productivity of an Acid-Fractured Well
552(1)
16.5.4 Comparison of Propped and Acid Fracture Performance
553(1)
16.6 Acidizing of Horizontal Wells
554(5)
References
555(3)
Problems
558(1)
Chapter 17 Hydraulic Fracturing for Well Stimulation
559(42)
17.1 Introduction
559(3)
17.2 Length, Conductivity, and Equivalent Skin Effect
562(4)
17.3 Optimal Fracture Geometry for Maximizing the Fractured Well Productivity
566(8)
17.3.1 Unified Fracture Design
567(7)
17.4 Fractured Well Behavior in Conventional Low-Permeability Reservoirs
574(5)
17.4.1 Infinite Fracture Conductivity Performance
574(4)
17.4.2 Finite Fracture Conductivity Performance
578(1)
17.5 The Effect of Non-Darcy Flow on Fractured Well Performance
579(6)
17.6 Fractured Well Performance for Unconventional Tight Sand or Shale Reservoirs
585(7)
17.6.1 Tight Gas Sands
586(1)
17.6.2 Shale
586(6)
17.7 Choke Effect for Transverse Hydraulic Fractures
592(9)
References
594(3)
Problems
597(4)
Chapter 18 The Design and Execution of Hydraulic Fracturing Treatments
601(60)
18.1 Introduction
601(1)
18.2 The Fracturing of Reservoir Rock
602(7)
18.2.1 In-Situ Stresses
602(2)
18.2.2 Breakdown Pressure
604(2)
18.2.3 Fracture Direction
606(3)
18.3 Fracture Geometry
609(7)
18.3.1 Hydraulic Fracture Width with the PKN Model
610(3)
18.3.2 Fracture Width with a Non-Newtonian Fluid
613(1)
18.3.3 Fracture Width with the KGD Model
614(1)
18.3.4 Fracture Width with the Radial Model
615(1)
18.3.5 Tip Screenout (TSO) Treatments
615(1)
18.3.6 Creating Complex Fracture Geometries
615(1)
18.4 The Created Fracture Geometry and Net Pressure
616(19)
18.4.1 Net Fracturing Pressure
616(5)
18.4.2 Height Migration
621(3)
18.4.3 Fluid Volume Requirements
624(5)
18.4.4 Proppant Schedule
629(2)
18.4.5 Propped Fracture Width
631(4)
18.5 Fracturing Fluids
635(7)
18.5.1 Rheological Properties
636(5)
18.5.2 Frictional Pressure Drop during Pumping
641(1)
18.6 Proppants and Fracture Conductivity
642(4)
18.6.1 Propped Fracture Conductivity
643(2)
18.6.2 Proppant Transport
645(1)
18.7 Fracture Diagnostics
646(5)
18.7.1 Fracturing Pressure Analysis
646(1)
18.7.2 Fracture Geometry Measurement
647(4)
18.8 Fracturing Horizontal Wells
651(10)
18.8.1 Fracture Orientation in Horizontal Well Fracturing
651(1)
18.8.2 Well Completions for Multiple Fracturing
652(3)
References
655(2)
Problems
657(4)
Chapter 19 Sand Management
661(42)
19.1 Introduction
661(1)
19.2 Sand Flow Modeling
662(14)
19.2.1 Factors Affecting Formation Sand Production
662(10)
19.2.2 Sand Flow in the Wellbore
672(4)
19.3 Sand Management
676(1)
19.3.1 Sand Production Prevention
676(1)
19.3.2 Cavity Completion
677(1)
19.4 Sand Exclusion
677(21)
19.4.1 Gravel Pack Completion
678(10)
19.4.2 Frac-Pack Completion
688(5)
19.4.3 High-Performance Fracturing
693(1)
19.4.4 High-Performance Fractures in Deviated Production Wells
694(3)
19.4.5 Perforating Strategy for High-Performance Fractures
697(1)
19.5 Completion Failure Avoidance
698(5)
References
699(3)
Problems
702(1)
Appendix A 703(2)
Appendix B 705(4)
Appendix C 709(2)
Index 711
Michael J. Economides is professor of engineering at the University of Houston. His work focuses on optimizing hydrocarbon production from reservoir to market. A leading energy analyst, he is editor-in-chief of Energy Tribune and the Journal of Natural Gas Science and Engineering.  

A. Daniel Hill is professor in the Harold Vance Department of Petroleum Engineering at Texas A&M University, holds the R.L. Whiting endowed chair, and is a Distinguished Member of the Society of Petroleum Engineers (SPE).

 

Christine Ehlig-Economides is professor in the Harold Vance Department of Petroleum Engineering at Texas A&M University and holds the A.B. Stevens endowed chair. She is a member of the U.S. National Academy of Engineering.

 

Ding Zhu, is associate professor in the Harold Vance Department of Petroleum Engineering at Texas A&M University, holds the W.D. Von Gonten Faculty Fellowship, and is a Distinguished Member of the Society of Petroleum Engineers (SPE).