Muutke küpsiste eelistusi

E-raamat: Phase Transformations in Steels: Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques

Edited by (University of Leeds, UK), Edited by (University of Wollongong, Australia)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 234,65 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Concluding a comprehensive two-volume reference on phase transformations in steel, scientists and engineers in metals and materials consider such topics as the crystallography of martensite transformations in steels, shape memory in ferrous alloys, phase transformations in quenched and partitioned steels, first principles in modeling phase transformation in steels, the molecular dynamics modeling of martensitic transformations in steels, atom probe tomography for studying phase transformations in steels, and applying synchrotron and neutron scattering techniques for tracking phase transformations in steels. The first volume discusses fundamentals and diffusion-controlled transformations. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

The processing-microstructure-property relationships in steels continue to present challenges to researchers due to the complexity of phase transformation reactions and the wide spectrum of microstructures and properties achievable. This major two-volume work summarizes the current state of research on phase transformations in steels and its implications for the emergence of new steels with enhanced engineering properties.

Volume 2 reviews current research on diffusionless transformations and phase transformations in high strength steels, as well as advances in modeling and analytical techniques which underpin this research. Chapters in part one discuss the crystallography and kinetics of martensite transformations, the morphology, substructure and tempering of martensite as well as shape memory in ferrous alloys. Part two reviews research on phase transformations in high strength low alloy (HSLA) steels, transformation induced plasticity (TRIP)-assisted multiphase steels, quenched and partitioned steels, advanced nanostructured bainitic steels, high manganese twinning induced plasticity (TWIP) and maraging steels. The concluding two parts review advances in modeling and the use of advanced analytical techniques to improve the understanding of phase transformations in steels.

Arvustused

"The two volumes represent a thorough study on this subject...gives a better understanding on microstructural and mechanical behavior of steels, predict their lifetime evolution and act to prevent material degradation and significant environmental impacts."--International Journal of Environmental Studies, Vol 70, Issue 2-13

A new and comprehensive book on phase transformations is both timely and welcome The various chapters bring nicely up-to-date the vast knowledge of steel transformations in the literature., Professor Ted Massalski, Carnegie Mellon University, USA (from the Foreword)

Contributor contact details xiii
Foreword xvii
Introduction xix
Part I Diffusionless transformations
1(150)
1 Crystallography of martensite transformations in steels
3(31)
P. M. Kelly
1.1 Introduction
3(1)
1.2 Martensite transformations in steels
4(6)
1.3 Phenomenological theory of martensite crystallography (PTMC)
10(8)
1.4 The post phenomenological theory of martensite crystallography (PTMC) period
18(5)
1.5 Strain energy - the Eshelby/Christian model and the infinitesimal deformation (ID) approach
23(2)
1.6 Interfacial dislocation models
25(3)
1.7 Future trends
28(1)
1.8 Conclusions
29(1)
1.9 References
30(4)
2 Morphology and substructure of martensite in steels
34(25)
T. Maki
2.1 Morphology and crystallographic features of martensite in ferrous alloys
34(4)
2.2 Morphology and substructure of lath martensite
38(8)
2.3 Morphology and substructure of lenticular martensite
46(4)
2.4 Morphology and substructure of thin plate martensite
50(4)
2.5 Conclusions
54(2)
2.6 References
56(3)
3 Kinetics of martensite transformations in steels
59(24)
G. B. Olson
Z. D. Feinberg
3.1 Introduction
59(1)
3.2 Mechanism and kinetics of martensitic transformation
60(3)
3.3 Mechanically induced transformations
63(3)
3.4 Transformation plasticity constitutive relations and applications
66(13)
3.5 Conclusions
79(1)
3.6 References
80(3)
4 Shape memory in ferrous alloys
83(43)
D. Dunne
4.1 Introduction
83(6)
4.2 Fe-Pt alloys
89(4)
4.3 Fe-Ni and Fe-Ni-C alloys
93(3)
4.4 Fe-Ni-Co-based alloys
96(3)
4.5 Austenitic stainless steels with low stacking fault energy (SFE)
99(1)
4.6 Fe-Mn-based alloys
100(15)
4.7 Summary
115(3)
4.8 Acknowledgements
118(1)
4.9 References
118(8)
5 Tempering of martensite in carbon steels
126(25)
G. Krauss
5.1 Introduction
126(1)
5.2 Martensitic microstructures prior to tempering heat treatments
127(3)
5.3 Classification of aging and tempering stages: general considerations
130(1)
5.4 Changes in martensitic fine structure due to aging
131(1)
5.5 The stages of tempering
132(13)
5.6 Conclusions
145(1)
5.7 References
145(6)
Part II Phase transformations in high strength steels
151(212)
6 Phase transformations in microalloyed high strength low alloy (HSLA) steels
153(60)
R. C. Cochrane
6.1 Introduction to microalloyed high strength low alloy (HSLA) steels
153(2)
6.2 Brief historical review of the development of microalloyed steels
155(2)
6.3 Solubility of microalloying elements in austenite and ferrite
157(4)
6.4 Precipitation
161(16)
6.5 Effects of microalloying on transformation kinetics
177(8)
6.6 Phase transformations during high strength low alloy (HSLA) steels processing
185(14)
6.7 Controlled processed ferrite/bainite and acicular ferrite steels
199(6)
6.8 Conclusions and future trends
205(2)
6.9 Acknowledgements
207(1)
6.10 References
207(6)
7 Phase transformations in transformation induced plasticity (TRIP)-assisted multiphase steels
213(34)
P. J. Jacques
7.1 Introduction
213(2)
7.2 Historical perspectives on the emergence of transformation induced plasticity (TRIP)-assisted multiphase steels
215(8)
7.3 Influence of parameters of the thermomechanical process on the formation of multiphase microstructures containing retained austenite
223(19)
7.4 Conclusion and future trends
242(1)
7.5 References
243(4)
8 Phase transformations in quenched and partitioned steels
247(24)
J. G. Speer
8.1 Introduction to the quenching and partitioning concept
247(5)
8.2 Microstructure development fundamentals and alloy designs
252(8)
8.3 Mechanical behavior, potential applications, and implementation status
260(7)
8.4 Conclusions
267(1)
8.5 References
268(3)
9 Phase transformations in advanced bainitic steels
271(24)
F. G. Caballero
C. Garcia-Mateo
9.1 Introduction
271(2)
9.2 Design of third generation of advanced high strength steels
273(10)
9.3 Carbide-free bainitic steels: a material ready for the nanocentury
283(7)
9.4 Conclusions and future trends
290(1)
9.5 Acknowledgement
291(1)
9.6 References
291(4)
10 Phase transformations in high manganese twinning-induced plasticity (TWIP) steels
295(37)
B. C. De Cooman
10.1 Introduction
295(2)
10.2 Fe-Mn-X alloys
297(10)
10.3 Strain-induced twinning
307(20)
10.4 Twinning-induced plasticity (TWIP) industrialization
327(1)
10.5 Conclusions
327(1)
10.6 Acknowledgements
328(1)
10.7 References
328(4)
11 Phase transformations in maraging steels
332(31)
W. Sha
H. Leitner
Z. Guo
W. Xu
11.1 State of the art of ultra high strength steels
332(2)
11.2 Types of maraging steels
334(5)
11.3 Microstructure and precipitates in maraging steels
339(3)
11.4 Reverted austenite and mechanical properties
342(4)
11.5 Evolution of precipitates and the overall process
346(3)
11.6 Precipitation kinetic theory in Fe-12Ni-6Mn maraging type alloy
349(7)
11.7 Research trends
356(3)
11.8 References
359(4)
Part III Modelling phase transformations
363(142)
12 First principles in modelling phase transformations in steels
365(40)
M. H. F. Sluiter
12.1 Introduction
365(5)
12.2 Ab initio description of phase stability of pure iron
370(4)
12.3 Ab initio phase stability of iron carbides
374(3)
12.4 Substitutional alloying elements
377(4)
12.5 Ab initio description of diffusivity in bcc Fe
381(3)
12.6 Future trends
384(1)
12.7 References
385(20)
13 Phase field modelling of phase transformations in steels
405(28)
M. Militzer
13.1 Introduction
405(1)
13.2 Phase field methodology
406(8)
13.3 Austenite formation
414(4)
13.4 Austenite decomposition
418(10)
13.5 Future trends
428(1)
13.6 References
429(4)
14 Molecular dynamics modeling of martensitic transformations in steels
433(31)
H. M. Urbassek
L. Sandoval
14.1 Introduction
433(1)
14.2 Interatomic interaction potentials
434(9)
14.3 Martensitic transformations in iron: case studies
443(6)
14.4 Transformations in ferrous nanosystems
449(10)
14.5 Conclusions and future trends
459(1)
14.6 Acknowledgement
460(1)
14.7 References
460(4)
15 Neural networks modeling of phase transformations in steels
464(41)
C. Capdevila
15.1 Introduction
464(1)
15.2 Essence of the method
465(7)
15.3 On the quest of critical temperatures
472(16)
15.4 Determining microstructural parameters
488(8)
15.5 Development of continuous cooling transformation (CCT) diagrams
496(2)
15.6 Conclusions and future trends
498(2)
15.7 References
500(5)
Part IV Advanced analytical techniques for studying phase transformations in steels
505(129)
16 Application of modern transmission electron microscopy (TEM) techniques to the study of phase transformations in steels
507(25)
D. Boyd
Z. Yao
16.1 Introduction
507(1)
16.2 Transmission electron microscopy (TEM) sample preparation
508(2)
16.3 Conventional transmission electron microscopy (CTEM) of steels
510(3)
16.4 Modern transmission electron microscopy (TEM) of steels
513(11)
16.5 In-situ transmission electron microscopy (TEM)
524(1)
16.6 Future trends: emerging transmission electron microscopy (TEM) techniques
525(3)
16.7 Sources of further information and advice
528(1)
16.8 Conclusions
529(1)
16.9 References
529(3)
17 Atom probe tomography for studying phase transformations in steels
532(25)
M. K. Miller
17.1 Introduction
532(1)
17.2 Outline of the technique
533(2)
17.3 Specimen requirements
535(1)
17.4 Recent developments
536(1)
17.5 Interpretation of data
537(1)
17.6 Characterizing and understanding phase transformations in various steels
538(15)
17.7 Future trends
553(1)
17.8 Conclusion
554(1)
17.9 Acknowledgments
554(1)
17.10 References
554(3)
18 Electron backscatter diffraction (EBSD) techniques for studying phase transformations in steels
557(31)
S. Zaefferer
N.-N. Elhami
P. Konijnenberg
18.1 Introduction
557(1)
18.2 Fundamentals of electron backscatter diffraction (3D-EBSD) technique
558(3)
18.3 The current standard of 2D electron backscatter diffraction (EBSD) applications
561(8)
18.4 3D electron backscatter diffraction (3D-EBSD)
569(10)
18.5 Conclusions and future development of the technique
579(4)
18.6 References
583(5)
19 Application of synchrotron and neutron scattering techniques for tracking phase transformations in steels
588(46)
S. S. Babu
19.1 Introduction
588(2)
19.2 X-ray and neutron scattering techniques
590(15)
19.3 Measurements of phase transformation in steels
605(19)
19.4 Conclusions and future trends
624(1)
19.5 Acknowledgements
625(1)
19.6 References
625(9)
Index 634
Elena Pereloma is Professor of Physical Metallurgy and Director of the BlueScope Steel Metallurgy Centre at the University of Wollongong, Australia. David V. Edmonds is Emeritus Professor of Metallurgy at University of Leeds, UK. Both have made major contributions to steel research.