Muutke küpsiste eelistusi

E-raamat: Phenomenological Creep Models of Composites and Nanomaterials: Deterministic and Probabilistic Approach

  • Formaat: 414 pages
  • Ilmumisaeg: 02-Jan-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351378697
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 414 pages
  • Ilmumisaeg: 02-Jan-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351378697

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The use of new engineering materials in the aerospace and space industry is usually governed by the need for enhancing the bearing capacity of structural elements and systems, improving the performance of specific applications, reducing structural weight and improving its cost-effectiveness. Crystalline composites and nanomaterials are used to design lightweight structural elements because such materials provide stiffness, strength and low density/weight. This book reviews the effect of high temperature creep on structural system response, and provides new phenomenological creep models (deterministic and probabilistic approach) of composites and nanomaterials.

Certain criteria have been used in selecting the creep functions in order to describe a wide range of different behavior of materials. The experimental testing and evaluation of time variant creep in composite and nanomaterials is quite complex, expensive and, at times, time consuming. Therefore, the analytical analysis of creep properties and behavior of structural elements made of composite and nanocomposite materials subjected to severe thermal loadings conditions is of great practical importance.

Composite elements and heterogeneous materials, from which they are made, make essential changes to the classical scheme for constructing the phenomenological creep model of composite elements, because it reflects the specificity of the composite material and manifests itself in the choice of two basic functions of the creep constitutive equation, namely memory and instantaneous modulus of elasticity functions. As such, the concepts and analytical techniques presented here are important. But the principal objective of this book is to demonstrate how nonlinear viscoelastic engineering creep theory can be incorporated into the general theory of mechanics of materials so that composite components can be designed and analyzed. The results are supported by step-by-step practical structural design examples and will be useful for structural engineers, code developers as well as material science researchers and university faculty. The phenomenological creep models presented in this book provide a usable engineering approximation for many applications in composite engineering.

Preface iii
Notations xi
1 Introduction and Overview
1(27)
1.1 Definition of structured composites and nanomaterials
1(3)
1.1.1 The use of nanocomposites in space technology
1(2)
1.1.2 Classification of polymers
3(1)
1.2 What is the main difference between the composites and ordinary solid bodies?
4(1)
1.3 Composite structural systems
5(8)
1.3.1 Classification according to a structured feature
10(2)
1.3.2 Reinforced media theory
12(1)
1.4 Model of elastic deformation of a unidirectional multilayered composite material
13(7)
1.4.1 Elastic deformation model of cross-reinforced composite material
16(4)
1.5 Optimization of multi-layered composite structure parameters
20(2)
1.5.1 Influence of fiber length
22(1)
1.5.2 Elastic behavior---longitudinal loading
22(1)
1.6 Molecular mechanisms of chemical reactions
22(4)
1.6.1 Chemical reaction kinetics
22(2)
1.6.2 Methods for determining the order of reactions
24(1)
1.6.3 Ostwald's "isolation method"
24(1)
1.6.4 Graphic method
25(1)
1.6.5 The differential method of Van't Hoff
25(1)
1.6.6 Dependence of the reaction rate on temperature
25(1)
References
26(2)
2 Creep Laws for Composite Materials
28(41)
2.1 Introduction
28(1)
2.2 Phenomenological creep model: single integral type constitutive equation (CE)
29(11)
2.2.1 Temperature and kinetic energy
29(6)
2.2.2 Use of classical relations of composite elastic modulus
35(1)
2.2.3 Instantaneous creep modulus
35(2)
2.2.4 Effects of θg on modulus of elasticity
37(3)
2.3 Engineering creep of composites
40(1)
2.4 Maxwell model
41(1)
2.5 Standard linear model
42(3)
2.6 Effect of variable dimensionless parameters on STS diagram (Standard Linear model)
45(21)
2.6.1 Allowable creep stresses vs. parameter β
49(9)
2.6.2 Allowable creep stresses vs. parameter β and n
58(8)
References
66(3)
3 Creep Models of Fibrous and Dispersed Composites: Deterministic Approach
69(72)
3.1 Micromechanics and macromechanics
69(2)
3.2 Brief classification of non-newtonian fluids
71(2)
3.3 Composite design process
73(1)
3.3.1 Artificial composite materials
73(1)
3.4 Mechanical testing of composites
74(1)
3.5 Resilient properties of composites
75(1)
3.6 The phenomenological approach in mechanics of heterogeneous media
76(22)
3.6.1 Structured---phenomenological approach to the solution of boundary value mechanics of composites
78(2)
3.6.2 Equilibrium equations of multilayered composites
80(4)
3.6.3 Hooke's law for each layer
84(2)
3.6.4 Elastic deformation model of cross-reinforced composite material
86(12)
3.7 Phenomenological creep models of composite structures
98(3)
3.8 Temperature-time dependent structured heterogeneous composites
101(23)
3.9 General form of Equation (3.37)
124(8)
3.10 Phenomenological creep models of composites with dispersed filler
132(7)
References
139(2)
4 Creep Models of Nanocomposites: Deterministic Approach
141(89)
4.1 Introduction
141(6)
4.1.1 Small scaled materials
145(1)
4.1.2 Approaches to larger surface area
146(1)
4.1.3 Size effect and the nanomaterials properties
147(1)
4.2 Physical aspects of nanocomposite structures
147(3)
4.3 Chemical aspects of nanocomposite structures and reaction kinetics
150(7)
4.3.1 Rate of reaction
151(1)
4.3.2 Integrated rate laws
151(2)
4.3.3 Dependence of the conversion of metal ions on time
153(1)
4.3.4 Physicochemical aspects of formation of structured nanocomposites
154(3)
4.4 Mechanical properties of nanocrystalline metals and alloys
157(1)
4.4.1 Yield strength
157(1)
4.5 Creep of small coarse grained and nanocrystalline materials
158(6)
4.5.1 Creep mechanisms in small coarse grained materials
158(1)
4.5.2 Phenomenological creep models of nanocrystalline materials
159(1)
4.5.3 Nucleation and growth process of nanoparticles
160(1)
4.5.4 Modeling of nucleation and growth process of nanoparticles
161(3)
4.6 Basic creep equations and nanomaterials parameters relations
164(64)
4.6.1 Effect of function f3 (nucleation and growth process of nanoparticles) type on creep process
165(44)
4.6.2 Effect of EQ/E2 ratio on creep process
209(3)
4.6.3 Effect of volumetric fillers ratio φf on creep process
212(16)
References
228(2)
5 Physical Chemistry of Nanoparticles
230(50)
5.1 Introduction
230(2)
5.2 Disperse systems
232(4)
5.2.1 Classification by degree of dispersion
232(1)
5.2.2 Classification of disperse systems
232(3)
5.2.3 Sensitivity of tension stresses to concentration surfactants
235(1)
5.3 The rate of chemical reaction
236(1)
5.4 Temperature effect on chemical reaction rate
237(3)
5.5 Phenomenological kinetics
240(3)
5.5.1 Basic definitions and postulates
240(3)
5.6 Kinetics of simple irreversible reactions
243(5)
5.6.1 First-order chemical reactions
244(2)
5.6.2 Second-order reactions
246(1)
5.6.3 Third-order reaction
247(1)
5.6.4 Zero-order reactions
248(1)
5.7 Determination of the chemical reactions order
248(2)
5.7.1 Method for determining the order of chemical reaction
249(1)
5.8 Activation energy
250(20)
5.8.1 Kinetics of complex reactions
251(1)
5.8.2 The principle of independence
252(1)
5.8.3 The concept of a rate determining stage
253(1)
5.8.4 Reversible reactions of the first order
253(1)
5.8.5 Reversible second-order reactions
254(1)
5.8.6 Kinetics of parallel reaction with reversibility in one stage
255(15)
5.9 Autocatalytic chemical reactions
270(8)
References
278(2)
6 Phenomenological Creep Models of Fibrous Composites (Probabilistic Approach)
280(62)
6.1 Introduction
280(4)
6.1.1 Basic concepts and definitions of applied probability theory
280(1)
6.1.2 The distribution function and the distribution density of a random variable
281(1)
6.1.3 The Poisson probability distribution
282(1)
6.1.4 Correlation and dependence
282(2)
6.2 Continuous probability distributions
284(7)
6.2.1 Normal probability distributions
284(3)
6.2.2 Weibull distribution
287(1)
6.2.3 Rayleigh distribution
288(1)
6.2.4 Chi-squared distribution
289(2)
6.3 Joint probability distribution
291(1)
6.4 Characteristic function
292(2)
6.5 Functions of random variables and their distribution
294(5)
6.5.1 One-to-one functions of an absolutely continuous random variable
296(1)
6.5.2 Probabilistic transformation (linearization) method
297(2)
6.6 Confidence interval
299(6)
6.6.1 Confidence interval (poisson distribution)
301(1)
6.6.2 Confidence interval (binomial proportion)
302(3)
6.7 Probability distributions and concept of random success (failure)
305(14)
6.7.1 The binomial probability distribution
306(13)
6.8 Probabilistic creep models of composites
319(15)
6.8.1 Deterministic formulation of stochastic problems: numerical modeling
322(1)
6.8.2 Statistical data: composites and stress effect
323(11)
6.9 Structural composites failures in time
334(6)
References
340(2)
7 Phenomenological Creep Models of Nanocomposites (Probabilistic Approach)
342(57)
7.1 Construction of a stochastic creep model of nanocomposites
342(6)
7.1.1 Selection of filler material
343(1)
7.1.2 Remarkable properties of nanomaterials
344(1)
7.1.3 Promising nanomaterials
345(1)
7.1.4 Creation of new construction materials
346(2)
7.2 Creep models of nanocomposites: probabilistic approach
348(13)
7.2.1 General computer code and effect of different types of function f3
351(10)
7.3 Compilation of statistical data based on creep constitutive equation solutions
361(14)
7.4 Creep deformation process of nanocomposites as an ergodic random process
375(3)
7.5 Creep of the nanocomposite in the framework of the correlation theory of probability
378(2)
7.5.1 Mean value of allowable creep stress and strain
378(1)
7.5.2 Standard deviation and autocorrelation function of allowable creep stress and strain
378(2)
7.6 The first-occurrence time problem and the probability density P (a, t)
380(2)
7.7 Allowable creep stress vs. volumetric content of nanoparticles
382(14)
References
396(3)
Index 399
Leo Razdolsky has 45 years of experience in structural engineering, with focus on composite structures, power plants and cooling towers. He is also adept in computer modeling, material science and nanomaterials. Dr. Razdolsky has been teaching engineering courses at the University of Illinois and Northwestern University, and is currently conducting research work connected with high temperature creep of composite structural elements and systems. He has authored three books in this area.