Muutke küpsiste eelistusi

E-raamat: Photoactive Functional Soft Materials: Preparation, Properties, and Applications

Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Nov-2018
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527816743
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 162,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Nov-2018
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527816743
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book covers the design, synthesis, properties, and applications of functional photoactive soft materials, including aspects of polymers, block copolymers, elastomers, biomaterials, liquid crystals, chemical and physical gels, colloids, and host-guest systems. It combines, in a unified manner, authoritative accounts describing various structural and functional aspects of photoactive soft materials.

Photoactive Functional Soft Materials: Preparation, Properties, and Applications:

* Brings together the state-of-the-art knowledge on photoactive functional soft materials in a unified manner * Covers a vibrant research field with tremendous application potential in areas such as optoelectronics, photonics, and energy generation * Appeals to a large interdisciplinary audience because it is highly useful for researchers and engineers working on photonics, optoelectronics, imaging and sensing, nanotechnology, and energy materials

Photoactive Functional Soft Materials: Preparation, Properties and Applications focuses on the design and fabrication of photoactive functional soft materials for materials science, nanophotonics, nanotechnology, and biomedical applications.
Preface xi
1 Soft Materials Driven by Photothermal Effect and Their Applications
1(44)
Hari K. Bisoyi
Augustine M. Urbas
Quan Li
1.1 Introduction
1(2)
1.2 Liquid Crystals Driven by Photothermal Effect
3(13)
1.3 Polymers Driven by Photothermal Effect
16(7)
1.4 Gels Driven by Photothermal Effect
23(8)
1.5 Summary and Outlook
31(1)
Acknowledgments
32(1)
References
32(13)
2 Photoresponsive Supramolecular Polymers
45(46)
Yuichi Kitamoto
Keisuke Aratsu
Shiki Yagai
2.1 Introduction
45(1)
2.2 Photoresponsive Supramolecular Polymers by Host-Guest and Coordination Systems
46(6)
2.3 Photoresponsive Supramolecular Polymers by Complementary Hydrogen Bonds
52(9)
2.4 Photoresponsive Supramolecular Polymers by Stacking of Photochromic Molecules
61(15)
2.5 Photoresponsive Supramolecular Polymers with Photocontrollable ID Topology
76(7)
2.6 Summary and Outlook
83(1)
References
84(7)
3 Light-Driven Self-Organized Liquid Crystalline Nanostructures Enabled by Chiral Molecular Switches or Motors: From 1D to 3D Photonic Crystals
91(34)
Ling Wang
Quan Li
3.1 Introduction
91(2)
3.2 Light-Driven Cholesteric Liquid Crystals
93(13)
3.2.1 Cholesteric LCs with Chiral Azobenzene Photoswitches
93(7)
3.2.2 Cholesteric LCs with Chiral Diarylethene Photoswitches
100(4)
3.2.3 Cholesteric LCs with Chiral Spirooxazine and Overcrowded Alkenes
104(2)
3.3 Light-Driven Blue Phase Liquid Crystals
106(3)
3.4 Light-Driven Chiral Liquid Crystal Microdroplets and Microshells
109(5)
3.5 Summary and Perspective
114(1)
Acknowledgments
115(1)
References
116(9)
4 Photochemical Chirality Induction and Inversion in Soft Materials
125(42)
Yuna Kim
Noushaba N. Mafy
Nobuyuki Tamaoki
4.1 Introduction
125(1)
4.2 Chirality Induction from Achiral Soft Materials by CPL
126(13)
4.2.1 Achiral LMW Liquid Crystals
128(4)
4.2.2 Achiral Polymers
132(5)
4.2.3 Self-Assembled Supramolecules
137(2)
4.3 Photochemical Chirality Inversion from Chiral Soft Materials
139(21)
4.3.1 Photoresponsive Chiral Dopants for Cholesteric Liquid Crystals
140(1)
4.3.1.1 Azobenzenes
141(4)
4.3.1.2 Diarylethenes
145(4)
4.3.1.3 Overcrowded Alkenes
149(4)
4.3.2 Chiral Polymers
153(3)
4.3.2.1 Azopolymers
156(1)
4.3.2.2 Overcrowded Alkene-Based Polymers
157(3)
4.4 Summary and Outlook
160(1)
References
161(6)
5 Soft Photoactuators in Microfluidics
167(30)
Lu-Jian Chen
Quan Li
5.1 Introduction
167(2)
5.2 Photoactive Soft Materials as Generic Microactuators
169(17)
5.2.1 Light-Driven Microvalves
169(2)
5.2.1.1 Hydrogel Microvalves Actuated by Photothermal Effect
171(3)
5.2.1.2 Hydrogel Microvalves Actuated by Photoisomerization
174(3)
5.2.2 Light-Driven Micropumps and Micromixers
177(5)
5.2.3 Light-Driven Emulsification and De-emulsification
182(2)
5.2.4 New Conceptual Light-Driven Fluid Motion in Microchannels
184(2)
5.3 Soft Photoactuators as Optical Microcomponents
186(5)
5.3.1 Tunable Microlenses Actuated by Photoactive Hydrogels
187(1)
5.3.2 Microlens Arrays Actuated by Photoactive Emulsions
188(3)
5.4 Summary and Outlook
191(1)
Acknowledgments
192(1)
References
192(5)
6 Liquid Crystal Polymer Networks and Elastomers for Light-Fueled Robotics
197(30)
Hao Zeng
Markus Lahikainen
Owies M. Wani
Alex Berdin
Arri Priimagi
6.1 Photoactuation: A New Paradigm for Soft Micro-robotics
197(3)
6.2 Photoactuation in LCNs
200(7)
6.2.1 Photochemical Actuation
202(2)
6.2.2 Photothermal Actuation
204(1)
6.2.3 Comparison Between the Photochemical and Photothermal Effects
205(2)
6.3 Diversity of Shape Changes in LCNs
207(5)
6.3.1 Uniaxial Contraction/Expansion
207(1)
6.3.2 Bending and Coiling
208(1)
6.3.3 From Flat Sheets to Cones
209(1)
6.3.4 Shape Changes via Complex Alignment Patterning
210(2)
6.4 Physics and Dynamics of Small-Scale Robots
212(3)
6.5 A Historical Overview of Light-Fueled Micro-robots
215(4)
6.6 Outlook
219(1)
References
220(7)
7 Light-Driven Phase Transitions in Liquid Crystals and Their Applications
227(58)
Ammathanadu S. Amrutha
Ammathanadu S. Achalkumar
Quan Li
7.1 Introduction to Liquid Crystals
227(3)
7.2 Classification of Liquid Crystals
230(5)
7.2.1 Calamitic Liquid Crystals: Phase Types and Structures
230(1)
7.2.1.1 Nematic (N) and Cholesteric (N*) Mesophase
230(1)
7.2.1.2 Smectic (Sm) Mesophase
231(1)
7.2.1.3 Chiral Frustrated Phases
232(2)
7.2.2 Discotic Liquid Crystals: Phase Types and Structures
234(1)
7.2.2.1 Nematic (N) Phase
234(1)
7.2.2.2 Columnar (Col) Mesophases
234(1)
7.3 Light-Driven Phase Transitions in Liquid Crystals
235(23)
7.3.1 Azobenzenes
235(1)
7.3.1.1 Photoinduced Nematic to Isotropic Phase Transition
236(6)
7.3.1.2 Photoinduced Nematic to Smectic Phase Transition
242(2)
7.3.1.3 Photoinduced Phase Transition in Bent-Core Systems
244(3)
7.3.1.4 Photoinduced Phase Transitions Involving Smectic and Chiral Phases
247(8)
7.3.1.5 Photoinduced Phase Transitions Involving Columnar Phases
255(1)
7.3.2 Axially Chiral Azo Compounds
256(2)
7.3.3 Azoxybenzenes
258(1)
7.3 A Spiropyrans and Naphthopyrans
258(14)
7.3.5 Fulgides
261(1)
7.3.6 Ketones
262(2)
7.3.7 Diarylethenes
264(3)
7.3.8 Butadienes
267(2)
7.3.9 Near Infrared Light-Driven Phase Transition in Hybrid Materials
269(3)
7.4 Applications of Light-Driven Phase Transitions
272(2)
7.4.1 Holography
272(1)
7.4.2 Optical Storage Device
272(1)
7.4.3 Photocontrol in Liquid Crystal Displays
273(1)
7.4.4 Photocontrol of Mechanical Motion in Liquid Crystal Elastomers
274(1)
7.5 Summary and Perspective
274(1)
References
275(10)
8 Photomechanical Soft Nanocomposites: Synergies Between Soft Matrix and Energy Conversion Additives
285(34)
Jing Hu
Shudeng Ma
Haifeng Yu
Quan Li
8.1 Introduction
285(1)
8.2 Photomechanical Nanocomposites Based on Photothermal Effect
286(10)
8.2.1 Design Strategy
287(2)
8.2.2 Fabrication
289(1)
8.2.2.1 Homogeneous Single-Layer Films
290(1)
8.2.2.2 Asymmetric Assembled Films
291(3)
8.2.3 Properties of Photothermal Actuators
294(1)
8.2.3.1 Characterization
294(1)
8.2.3.2 Properties
295(1)
8.3 Photomechanical Nanocomposites Based on Photochemical Effect
296(9)
8.3.1 Photodeformable Supramolecular Systems
296(1)
8.3.1.1 Reversible Metal-Ligand Coordination
296(1)
8.3.1.2 Interaction Between Cyclodextrin and Azobenzene Derivatives
297(2)
8.3.2 Liquid Crystalline Polymer Nanocomposites
299(1)
8.3.2.1 Aligned Carbon Nanotube
300(1)
8.3.2.2 Polymer-Dispersed Hybrid Film
301(2)
8.3.2.3 Bilayer Composite Film
303(1)
8.3.3 Incorporation of Upconversion Nanophosphors
303(2)
8.4 Applications
305(4)
8.5 Summary and Perspectives
309(1)
References
309(10)
9 Photoresponsive Polyolefins
319(22)
Shaji Varghese
John R. Severn
Albertus P. H. J. Schenning
9.1 Introduction
319(1)
9.2 Photoresponsive Polymers
320(2)
9.3 Need for Non-liquid Crystalline or Commodity Polymeric Materials
322(2)
9.4 Polyolefins
324(1)
9.5 Photoresponsive Polyolefins
325(7)
9.5.1 Bilayer Actuators
326(4)
9.5.2 Single-Layer Actuators
330(2)
9.6 Photo Patterning
332(4)
9.7 Challenges for Photoresponsive Polyolefins and Future Directions
336(1)
9.8 Conclusions
337(1)
References
337(4)
10 A Photoresponsive Multi-Bilayered Film for a Tunable Photonic Crystal
341(20)
Sunnam Kim
Seiji Kurihara
10.1 Introduction
341(3)
10.1.1 Photonic Crystals
341(1)
10.1.2 Tunable Photonic Crystals
342(2)
10.2 Photo-Tunable ID PCs
344(13)
10.2.1 Photoresponsive Properties of Azobenzene Molecules
344(1)
10.2.1.1 Optical Anisotropy Based on Molecular Orientation
345(2)
10.2.1.2 Refractive Indices Depending on Molecular Orientation States
347(1)
10.2.2 Fabrication of Multi-Bilayered Films
347(1)
10.2.2.1 Control of Reflection Wavelength
348(1)
10.2.2.2 Control of Reflection Intensity
349(1)
10.2.3 On-Off Switching of Reflection Based on Refractive Index Change
350(1)
10.2.4 Improvement of Response Speed
350(1)
10.2.4.1 Introduction of Biphenyl LC Group
350(2)
10.2.4.2 Introduction of Longer Conjugated LC Groups
352(5)
10.3 Summary and Outlook
357(1)
References
357(4)
11 Photoinduced Liquid Crystal Domain Engineering for Optical Field Control
361(28)
Wei Hu
Peng Chen
Yan-Qing Lu
11.1 Introduction
361(2)
11.2 Photoalignment Technology and Photopatterning System
363(2)
11.2.1 Photoalignment Technology
363(1)
11.2.2 Photopatterning System
364(1)
11.3 Binary LC Domains for Binary Optics
365(5)
11.4 Space-Variant LC Domains for Geometric Phase Modulation
370(5)
11.5 Digitalized LC Domains for Digitalized Geometric Phase
375(4)
11.6 Discussion and Conclusion
379(1)
References
379(10)
12 Azobenzene Polymers as Photoactive Materials for Shape Changes of Micro/Nano-objects
389(24)
Regis Barille
Ewelina Ortyl
Sonia Zielinska
12.1 Why Azobenzene-Based Photoactive Nano-objects?
389(7)
12.2 Azopolymer as a Photoactive Material
396(2)
12.3 Fabrication of Photoactive Nano-objects
398(6)
12.3.1 Fabrication of Photoactive Nanospheres
398(5)
12.3.2 Fabrication of Nanotubes and Nanowires
403(1)
12.3.3 Fabrications of Other Different Nano- and Micro-objects
404(1)
12.4 Results
404(3)
12.5 Summary and Outlook
407(1)
References
407(6)
13 Light-Controlled Encapsulation and Release Enabled by Photoresponsive Polymer Self-Assemblies
413(36)
Jesus del Barrio
Milagros Pinol
Luis Oriol
13.1 Introduction
413(2)
13.2 Photoresponsive Groups
415(2)
13.3 Photoresponsive Polymer Self-Assemblies for Encapsulation and Release
417(20)
13.3.1 Polymer Self-Assemblies from Linear Amphiphilic BCs
417(6)
13.3.2 Polymer Self-Assemblies from Linear-Dendritic and Branched BCs
423(4)
13.3.3 Polymer Self-Assemblies from Supramolecular BCs
427(2)
13.3.4 Photoresponsive Polymer Capsules
429(4)
13.3.5 Photoresponsive Microgels and Nanogels
433(1)
13.3.6 Other Miscellaneous Photoresponsive Polymeric Encapsulants
434(3)
13.4 Conclusions
437(1)
References
438(11)
14 Photoresponsive Soft Materials Based on Reversible Proton Transfer
449(20)
Yi Liao
Zhuozhi Wang
14.1 Introduction
449(2)
14.2 Photoactivity and Physicochemical Properties of Metastable-State Photoacids in Polymer Films
451(4)
14.3 Photochromic Materials Based on Photoinduced Proton Transfer
455(4)
14.4 Photo-Controlled Fragrant-Releasing Polymer Based on Acid-Catalyzed Hydrolysis
459(3)
14.5 Photo-Controlled Reversible Dissolution/Formation of Polymer Nanoparticles
462(3)
14.6 Conclusion
465(1)
References
466(3)
Index 469
Quan Li, PhD, is Director of the Organic Synthesis and Advanced Materials Laboratory at Liquid Crystal Institute (LCI), Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He was promoted to the youngest Full Professor of Organic Chemistry and Medicinal Chemistry at the Chinese Academy of Sciences (CAS) in Shanghai, and honored as one of One-Hundred Talent Scientists. He has directed numerous cutting-edge research projects and won the Kent State University Outstanding Research and Scholarship award. He has also been honored as Guest Professor and Chair Professor by several universities.