Muutke küpsiste eelistusi

E-raamat: Photonic Signals and Systems: An Introduction

  • Formaat: 384 pages
  • Ilmumisaeg: 01-Feb-2013
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071700801
  • Formaat - EPUB+DRM
  • Hind: 126,36 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 384 pages
  • Ilmumisaeg: 01-Feb-2013
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071700801

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.







Build the skills needed to engineer next-generation systems using light

Photonic Signals and Systems: An Introduction presents essential and current knowledge of light applied in the design of innovative photonic systems that engage both optical and electrical signals. The book demonstrates how to design photonic systems operating within the required approximations of the deployed photonic devices, mathematics of signal processing, and optical phenomena.

Systems problems are solved using a variety of mature optical technologies, such as acousto-optics, liquid crystals, liquid optics, optical micro-electro-mechanical systems (MEMS), bulk optics, integrated optics, and optical fibers. End-of-chapter problems and solutions reinforce a thorough understanding of the material.

Contents include:





Nature of light Electromagnetic waves, light, and polarization Interference, coherence, and diffraction Optical building blockscomponents Photonic systems using optical micro-electro-mechanical systems devices Photonic systems using acousto-optic devices Photonic systems using liquid crystal and liquid devices Optical experiments
Foreword xiii
Acknowledgments xv
1 Introduction
1(10)
Why You Should Read This Book
1(2)
The Book Subject: Photonic Signals and Systems
3(2)
Applications
5(4)
The Concluded Learning Experience
9(2)
2 Nature of Light
11(32)
Light Propagation
11(5)
Nature of Light from Its Early Beginnings
16(6)
Negative Refractive Index
22(2)
Photon: The Light Particle and Its Application---Photonics
24(4)
Mechanical Motion of Matter with Light
28(2)
Optoelectronics: Photons and Electrons
30(2)
The Laser
32(4)
The Fundamental Forces of Matter and Photonics
36(2)
Problems
38(4)
Additional Reading
42(1)
3 Electromagnetic Waves, Light, and Polarization
43(34)
Electromagnetic Waves and Polarization
43(1)
Mathematical Formalization of Traveling Waves
44(3)
EM Radiation, Media, and Polarization
47(2)
Maxwell's Equations for Traveling Waves and Polarization
49(3)
Real- and Complex-Wave Representations
52(2)
Complex Index of Refraction and Evanescent (Surface) Waves
54(3)
Total Internal Reflection and the Evanescent Wave
57(5)
Group Velocity and Dispersion
62(3)
Polarization Representations
65(7)
Problems
72(3)
Additional Reading
75(2)
4 Interference, Coherence, and Diffraction
77(48)
Interference
77(3)
Interference in the RF Regime of the EM Spectrum
80(7)
Interference in the Optical Regime of the EM Spectrum
87(9)
Interference of Two Optical Beams
96(4)
Visualizing Coherence of a Wave
100(2)
Plane-Wave Interference via the Plane-Wave Function
102(7)
Heterodyne Interferometry---RF Generation via Photo-Detection
109(3)
Diffraction
112(7)
Problems
119(6)
5 Optical Building Blocks: Components
125(58)
Acousto-Optic Devices
125(19)
Liquid Crystal Devices
144(7)
Mechanical Devices
151(2)
Fiber-Optic Devices
153(14)
Planar-Optics and Integrated-Optic (Waveguide) Devices
167(8)
Problems
175(8)
6 Photonic Systems Using Optical Micro-Electro-Mechanical Systems Devices
183(34)
Design Problem 6.1 Digital Micromirror Device-Based All-Digital-Mode Laser-Beam-Profiler
183(6)
Design Problem 6.2 Input-Power Fluctuations Insensitive DMD-Based Profiler
189(1)
Design Problem 6.3 DMD-Based Profiler Non-Gaussian Laser-Beam Profiling
190(1)
Design Problem 6.4 DMD-Based Profiler Incoherent-Light 2D Imaging
191(1)
Design Problem 6.5 DMD-Based Profiler Incoherent-Light 3D Imaging
192(1)
Design Problem 6.6 M2 Measurement Method to Characterize Non-Gaussian Beams
193(1)
Design Problem 6.7 High-Dynamic-Range Broadband Fiber-Optic Variable Optical Attenuator
194(1)
Design Problem 6.8 High-Dynamic-Range Broadband Fiber-Optic VOA with Graceful Beam Control
195(1)
Design Problem 6.9 Fault-Tolerant 100-Percent-Reliable Broadband Fiber-Optic VOA
196(1)
Design Problem 6.10 Fault-Tolerant High-Dynamic-Range Fiber-Optic VOA
197(1)
Design Problem 6.11 Fault-Tolerant Fiber-Optic Multiwavelength Equalizer
198(2)
Design Problem 6.12 Continuous-Spectrum DMD-Based Equalizer
200(1)
Design Problem 6.13 Digital Micromirror Device-Based Multi-Wavelength Add-Drop Routing Module
201(1)
Design Problem 6.14 Array of One-by-Two Fiber-Optic Switches and VOAs
202(2)
Design Problem 6.15 Long Time Delay and High-Resolution Photonic-Delay Line
204(1)
Design Problem 6.16 Switchless Long Time Delay and High-Resolution Photonic-Delay Line
205(2)
Design Problem 6.17 All-Optical Coder/Decoder Using Wavelengths and DMD
207(2)
Design Problem 6.18 Large-Scale Low-Loss Fiber-Optic Switch (Cross-Connect)
209(2)
Problems
211(2)
Additional Reading
213(4)
7 Photonic Systems Using Acousto-Optic Devices
217(22)
Design Problem 7.1 High-Stability AO Interferometer for Test and Measurement
217(3)
Design Problem 7.2 High-Stability ID Spatial-Scanning AO Interferometer
220(1)
Design Problem 7.3 Frequency-Coded RF Phased-Array Antenna Beam Steering
221(3)
Design Problem 7.4 Full Calibration RF Phased-Array Antenna Beam Steering
224(1)
Design Problem 7.5 Instantaneous Operation Wideband RF-Spectrum Analyzer
225(2)
Design Problem 7.6 Efficient Free-Space to Single-Mode Fiber (SMF) Light Coupling
227(2)
Design Problem 7.7 Fiber-Optic Variable Optical Attenuator (VOA) Using Single AOD
229(1)
Design Problem 7.8 High-Dynamic-Range Fiber-Optic Variable Optical Attenuator (VOA) Using an AOD
230(1)
Design Problem 7.9 High-Dynamic-Range Fiber-Optic Variable Optical Attenuator (VOA) Using AODs
231(1)
Design Problem 7.10 Bulk AOTF-Based Multi-Wavelength Variable Optical Attenuator (MVOA)
232(1)
Design Problem 7.11 Analog RF Transversal Filter Design Using AOTF
233(2)
Problems
235(1)
Additional Reading
236(3)
8 Photonic Systems Using Liquid Crystal and Liquid Devices
239(38)
Design Problem 8.1 Liquid Crystal Analog Fiber-Optic Variable Optical Attenuator (VOA)
239(2)
Design Problem 8.2 Liquid-Crystal-Based Polarization Dependent-Loss (PDL) Compensator
241(1)
Design Problem 8.3 Liquid Crystal Deflector Fiber-Optic VOA
242(1)
Design Problem 8.4 Wavelength-Tunable Fiber-Optic VOA Using Liquid Crystal Controls
243(1)
Design Problem 8.5 Multi-Wavelength Wavelength Fiber-Optic VOA Using Liquid Crystal Controls
244(1)
Design Problem 8.6 Liquid Crystal Freespace 1x2 Switch Using Cube PBS
245(4)
Design Problem 8.7 Higher-Performance LC Freespace 1x2 Switch Using Cube PBS
249(2)
Design Problem 8.8 Low-Noise LC 1-Bit Freespace TDU Using PBSs
251(2)
Design Problem 8.9 SMF Optical TDU Using LC Polarization Control
253(3)
Design Problem 8.10 2x2 Fiber-Optic Switch Using LC Devices and Cube PBSs
256(1)
Design Problem 8.11 Fast Reset-Speed Variable Focal-Length Lens Using LCs
257(2)
Design Problem 8.12 Zero Propagation-Loss Variable-Link Distance Optical Wireless Communications
259(1)
Design Problem 8.13 Fast 3D Optical Sensing and Imaging
260(1)
Design Problem 8.14 Fast ID Optical Sensing and Imaging Using Multiple Wavelengths
261(2)
Design Problem 8.15 Fast ID Interferometrie Optical Sensing and Imaging Using Multiple Wavelengths
263(1)
Design Problem 8.16 Intracavity Sensing and Imaging Using Multiple Wavelengths
264(2)
Design Problem 8.17 Smart High-Resolution Laser-Scanning Display
266(1)
Design Problem 8.18 Optical Distance Sensor Without Time Processing
267(1)
Problems
268(2)
Additional Reading
270(7)
9 Optical Experiments
277(18)
Experiment 9.1 Laser Beams
277(2)
Experiment 9.2 Incoherent-Light Imaging
279(2)
Experiment 9.3 Coherent-Light Focusing
281(2)
Experiment 9.4 Coherent-Light Imaging
283(1)
Experiment 9.5 Coherent-Light Fourier Transforms
284(1)
Experiment 9.6 Optical-Phase Retardation
285(2)
Experiment 9.7 Free-Space Optical Switching Using Polarization
287(2)
Experiment 9.8 Acousto-Optical Modulation of Laser Beams
289(1)
Experiment 9.9 Acousto-Optical Interferometry of Laser Beams
290(2)
Experiment 9.10 Optical Fibers and Fiber Lenses and Mirrors
292(3)
Problem Solutions 295(54)
Index 349
Nabeel A. Riza, B.S. Illinois Institute of Technology, M.S., Ph.D. California Institute of Technology (Caltech), is Chair Professor of Electrical and Electronic Engineering and Department Head at University College Cork, Ireland. He is a 2007 IEEE Fellow. In 2001, Professor Riza received the ICO Prize from the International Commission for Optics and the Ernst Abbe Medal from the Carl Zeiss Foundation, Germany. He holds 44 U.S. patents.