Muutke küpsiste eelistusi

E-raamat: Photorefractive Optoelectronic Tweezers and Their Applications

  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 31-Jul-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319093185
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 31-Jul-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319093185

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the never-ending quest for miniaturization, optically controlled particle trapping has opened up new possibilities for handling microscopic matter non-invasively. This thesis presents the application of photorefractive crystals as active substrate materials for optoelectronic tweezers. In these tweezers, flexible optical patterns are transformed into electrical forces by a photoconductive material, making it possible to handle matter with very high forces and high throughput. Potential substrate materials’ properties are investigated and ways to tune their figures-of-merit are demonstrated. A large part of the thesis is devoted to potential applications in the field of optofluidics, where photorefractive optoelectronic tweezers are used to trap, sort and guide droplets or particles in microfluidic channels, or to shape liquid polymers into optical elements prior to their solidification. Furthermore, a new surface discharge model is employed to discuss the experimental conditions needed for photorefractive optoelectronic tweezers.
1 Introduction: Optically-Mediated Particle Manipulation with High Throughput
1(6)
References
5(2)
2 Electrokinetic Forces in Inhomogeneous Fields
7(8)
2.1 Electrophoresis and Dielectrophoresis
7(2)
2.2 Dielectrophoretic Force Calculation
9(2)
2.3 Clausius-Mossotti Factor
11(2)
2.4 Generalization of DEP for Large Objects and Continuous Media: Multipoles and Polarization Force Density
13(2)
References
14(1)
3 Electric Fields and Their Detection in Photorefractive Crystals
15(26)
3.1 Optical Induction of Virtual Electrodes
15(1)
3.2 Photorefractive Crystals and Kukhtarev's Band Transport Model
16(4)
3.3 Internal Fields for Dielectrophoretic Trapping
20(1)
3.4 Bulk Photovoltaic Effect
21(2)
3.5 Visualization of Internal Electric Fields: Pockels Effect
23(3)
3.5.1 Optical Activity and Pockels Effect in BSO
25(1)
3.6 Measurement Techniques for the Evaluation of Photorefractive Media
26(15)
3.6.1 Diffraction Efficiency
26(2)
3.6.2 Zernike Phase Contrast
28(2)
3.6.3 Digital Holographic Microscopy (DHM)
30(7)
References
37(4)
4 Quantitative Investigation of Photorefractive Substrate Materials
41(20)
4.1 Highly Reduced Iron-Doped Lithium Niobate (LiNbO3)
41(10)
4.1.1 General Properties of LiNbO3
41(3)
4.1.2 Sample Preparation and Reduction Treatment
44(2)
4.1.3 Measurement of Charge Transport Parameters
46(3)
4.1.4 Electric Field Structure at High Modulation Depths
49(2)
4.2 Bismuth Silicon Oxide (BSO)
51(10)
4.2.1 Photoconductivity and Real-Time Induction of Space-Charge Fields
51(1)
4.2.2 Temporal Electric Field Response of BSO
52(4)
4.2.3 AC Response of Internal Space-Charge Fields in BSO
56(2)
4.2.4 Electric Field Structure and Phase-Shift Inside BSO
58(1)
References
59(2)
5 Optically-Induced Dielectrophoretic Particle Trapping
61(18)
5.1 Bismuth Silicon Oxide (BSO)
61(3)
5.2 Lithium Niobate (LiNbO3)
64(3)
5.3 Measurement and Anisotropy of Dielectrophoretic Forces in POT
67(3)
5.4 Surface Discharge Model
70(9)
References
76(3)
6 Optofluidic Applications for Photorefractive Optoelectronic Tweezers
79(26)
6.1 Multiplexing and Switching of Virtual Electrodes
80(2)
6.2 Charge Sensing and Particle Trapping on z-Cut Lithium Niobate Samples
82(5)
6.3 Fabrication of Polymer Gratings on Photorefractive LiNbO3
87(10)
6.3.1 Thickness Measurement of Spin-Coated PDMS Layers
89(5)
6.3.2 Optically-Induced Structuring of PDMS Layers
94(3)
6.4 Optofluidic Router
97(8)
6.4.1 Droplet Generator Design
97(1)
6.4.2 Optically-Induced Routing of Air and Liquid Droplets
98(3)
References
101(4)
7 Summary
105(6)
7.1 Conclusion
105(3)
7.2 Outlook
108(3)
References
109(2)
Appendix A Phase Unwrapping 111(6)
Appendix B Building Microstructures from Polydimethylsiloxane 117(6)
Curriculum Vitae 123
After receiving his diploma degree in Physics from the University of Münster for a project on microfluidics, Michael Esseling moved into the field of micro-particle manipulation and obtained his PhD in the group of Prof. Cornelia Denz in 2014 for his thesis "Photorefractive Optoelectronic Tweezers and Their Applications". His further research interests include the use photophoretic forces and accurately shaped light fields - so-called bottle beams - for handling absorbing matter on the microscale.