Muutke küpsiste eelistusi

E-raamat: Physarum Machines: Computers From Slime Mould

(University Of The West Of England, Uk)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 39,78 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A Physarum machine is a programmable amorphous biological computer experimentally implemented in the vegetative state of true slime mould Physarum polycephalum. It comprises an amorphous yellowish mass with networks of protoplasmic veins, programmed by spatial configurations of attracting and repelling gradients.This book demonstrates how to create experimental Physarum machines for computational geometry and optimization, distributed manipulation and transportation, and general-purpose computation. Being very cheap to make and easy to maintain, the machine also functions on a wide range of substrates and in a broad scope of environmental conditions. As such a Physarum machine is a 'green' and environmentally friendly unconventional computer.The book is readily accessible to a nonprofessional reader, and is a priceless source of experimental tips and inventive theoretical ideas for anyone who is inspired by novel and emerging non-silicon computers and robots.An account on Physarum Machines can be viewed at http://www.youtube.com/user/PhysarumMachines.
Preface v
Acknowledgments ix
1 From reaction-diffusion to Physarum computing
1(14)
1.1 Reaction-diffusion computers
2(2)
1.2 Limitations of reaction-diffusion computers
4(1)
1.3 Physarum Polycephalum
5(3)
1.4 Physarum as encapsulated reaction-diffusion computer
8(4)
1.5 Dawn of Physarum computing
12(3)
2 Experimenting with Physarum
15(22)
2.1 Where to get plasmodium of P. polycephalum
15(1)
2.2 Physarum farms
15(3)
2.3 Dishes and scanners
18(1)
2.4 Data input with food
19(1)
2.5 Substrates
20(4)
2.6 Nutrient-rich vs. non-nutrient substrates
24(4)
2.7 Sensing
28(6)
2.8 Modeling plasmodium
34(1)
2.9 Summary
35(2)
3 Physarum solves mazes
37(6)
3.1 Multiple-site start
37(1)
3.2 Single-site start
38(4)
3.3 Summary
42(1)
4 Plane tessellation
43(10)
4.1 The ubiquitous diagram
43(1)
4.2 Physarum construction of Voronoi diagram
44(3)
4.3 Summary
47(6)
5 Oregonator model of Physarum growing trees
53(12)
5.1 What a BZ medium could not do
55(1)
5.2 Physarum and Oregonator
55(3)
5.3 Building trees with Oregonator
58(2)
5.4 Validating simulation by experiments
60(1)
5.5 Summary
60(5)
6 Does the plasmodium follow Toussaint hierarchy?
65(24)
6.1 Proximity graphs
65(3)
6.1.1 Nearest-neighborhood graph
67(1)
6.1.2 Minimal spanning tree
67(1)
6.1.3 Relative neighborhood graph
67(1)
6.1.4 Gabriel graph
67(1)
6.1.5 Delaunay triangulation
67(1)
6.1.6 Toussaint hierarchy
68(1)
6.2 Plasmodium network and Toussaint hierarchy
68(2)
6.3 Preparing for graph growing
70(2)
6.4 Growing graph from a single point
72(8)
6.5 Growing from all points
80(5)
6.6 Physarum hierarchy
85(1)
6.7 Summary
85(4)
6.7.1 Complexity of plasmodium computation
86(1)
6.7.2 Halting problem
86(1)
6.7.3 Reusability
86(1)
6.7.4 Further studies
87(2)
7 Physarum gates
89(20)
7.1 XOR gate anyone?
90(3)
7.2 Ballistics of Physarum localizations
93(2)
7.3 Physarum gates
95(6)
7.4 Simulation of Physarum gates
101(4)
7.5 Simulated one-bit half-adder
105(2)
7.6 Why do we use a non-nutrient substrate?
107(1)
7.7 Summary
107(2)
8 Kolmogorov-Uspensky machine in plasmodium
109(16)
8.1 Physarum machines
111(9)
8.1.1 Materials for Physarum machine
111(1)
8.1.2 Nodes
112(1)
8.1.3 Edges
113(1)
8.1.4 Data, results and halting
114(1)
8.1.5 Active zone
115(1)
8.1.6 Bounded connectivity
115(1)
8.1.7 Addressing and labeling
116(2)
8.1.8 Basic operations
118(2)
8.2 Example of Physarum machine solving simple task
120(2)
8.3 On parallelism
122(1)
8.4 Summary
123(2)
9 Reconfiguring Physarum machines with attractants
125(10)
9.1 Fusion and multiplication of active zones
125(4)
9.2 Translating active zone
129(1)
9.3 Reconfiguration of Physarum machine
130(2)
9.4 Summary
132(3)
10 Programming Physarum machines with light
135(24)
10.1 Physarum and light
135(2)
10.2 Designing control domains
137(1)
10.3 Trees and waves
138(3)
10.4 Diverting plasmodium
141(1)
10.5 Inertia
141(5)
10.6 Multiplying plasmodium waves
146(1)
10.7 Foraging around obstacles
147(4)
10.8 Routing singals in Physarum machine
151(3)
10.9 Disobedience
154(2)
10.10 Summary
156(3)
11 Routing Physarum with repellents
159(16)
11.1 Avoiding repellents on nutrient-rich substrate
161(1)
11.2 Operating on non-nutrient substrate
162(2)
11.3 Operation DEFLECT
164(1)
11.4 Operation MULTIPLY
164(3)
11.5 Operation MERGE
167(3)
11.6 Summary
170(5)
12 Physarum manipulators
175(10)
12.1 Plasmodium on water surface
176(3)
12.2 Manipulating floating objects
179(5)
12.3 Summary
184(1)
13 Physarum boats
185(16)
13.1 Random wandering
187(1)
13.2 Sliding
188(1)
13.3 Pushing
188(1)
13.4 Anchoring
189(1)
13.5 Propelling
190(2)
13.6 Cellular automaton model
192(4)
13.7 Physarum tugboat
196(1)
13.8 On failures
196(3)
13.9 Summary
199(2)
14 Manipulating substances with Physarum machine
201(22)
14.1 Operations with colored substances
201(6)
14.2 Transfer of substances to specified location
207(2)
14.3 Mixing substances
209(4)
14.4 Superpositions of TRANSFER and MIX operations
213(2)
14.5 Summary
215(8)
15 Road planning with slime mould
223(24)
15.1 United Kingdom in a gel
225(3)
15.2 Development of transport links
228(3)
15.3 Weighted Physarum graphs
231(3)
15.4 Physarum vs. Department for Transport
234(2)
15.5 Proximity graphs and motorways
236(2)
15.6 Imitating disasters
238(5)
15.7 Summary
243(4)
Epilogue 247(2)
Bibliography 249(12)
Index 261