Muutke küpsiste eelistusi

E-raamat: Physics of Cryogenics: An Ultralow Temperature Phenomenon

(Adjunct Professor, Artificial Intelligence Scientist, Golden Gate University, San Francisco, CA; Research Associate Professor, Electrical Engineering and Computer Science, University if New Mexico, Albuquerque, New Mexico, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Nov-2017
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128145203
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 300,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Nov-2017
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128145203
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties.

This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  • Defines the fundamentals of thermodynamics that are associated with cryogenic processes
  • Provides an overview of the history of the development of cryogenic technology
  • Includes new, low temperature tables written by the author
  • Deals with the application of cryogenics to preserve objects at very low temperature
  • Explains how cryogenic phenomena work for human cell and human body preservations and new medical approaches
About the Author xi
Preface xiii
Acknowledgments xv
1 Cryogenic Technologies
1.1 Introduction
2(2)
1.2 Low Temperature in Science and Technology
4(4)
1.3 Defining Cryogenic Fluids or Liquids
8(10)
1.4 Heat Transfer and Thermal Design
18(7)
1.5 Refrigeration and Liquefaction
25(8)
1.6 Industrial Applications
33(14)
1.7 Cryogenic Fluid Management
47(3)
1.8 Conclusion
50(4)
References
50(1)
Further Reading
51(3)
2 Properties of Pure Substances
2.1 Introduction
54(1)
2.2 Properties of Pure Substances: Phase Changes
55(3)
2.3 Ideal Gas
58(1)
2.4 Real Gases and Vapors
59(14)
2.5 T---V Diagram for a Simple Compressible Substance
73(1)
2.6 P---V Diagram for a Simple Compressible Substance
73(2)
2.7 P---V---T Diagram for a Simple Compressible Substance
75(6)
References
79(1)
Further Reading
79(2)
3 Mixture
3.1 Ideal Gas Mixtures
81(4)
3.2 Real Gas Mixtures
85(1)
3.3 Liquid Mixtures
86(2)
References
86(2)
4 Work and Heat
4.1 Introduction of the Work and Heat
88(1)
4.2 Definition of Work
88(2)
4.3 Quasi-Static Processes
90(1)
4.4 Quasi-Equilibrium Work due to Moving Boundary
91(4)
4.5 Definition of a Cycle in Thermodynamics
95(1)
4.6 Path Functions and Point or State Functions
96(2)
4.7 PdV Work for Quasi-Static Process
98(3)
4.8 Nonequilibrium Work
101(1)
4.9 Other Work Modes
102(9)
4.10 Reversible and Irreversible Processes
111(1)
4.11 Definition of Energy (Thermal Energy or Internal Energy)
112(1)
4.12 Definition of Heat
113(1)
4.13 Comparison of Work and Heat
114(6)
References
117(1)
Further Reading
117(3)
5 First Law of Thermodynamics
5.1 Introduction
120(2)
5.2 System and Surroundings
122(2)
5.3 Signs for Heat and Work in Thermodynamics
124(1)
5.4 Work Done During Volume Changes
125(3)
5.5 Paths Between Thermodynamic States
128(3)
5.6 Path Independence
131(1)
5.7 Heat and Work
132(1)
5.8 Heat as Energy in Transition
133(1)
5.9 The First Law of Thermodynamics Applied to a Cycle
134(1)
5.10 Sign Convention
135(1)
5.11 Heat Is a Path Function
135(2)
5.12 Energy Is a Property of a System
137(1)
5.13 Energy of an Isolated System is Conserved
138(2)
5.14 Internal Energy and the First Law of Thermodynamics
140(5)
5.15 Internal Energy of an Ideal Gas
145(1)
5.16 Introduction to Enthalpy
146(1)
5.17 Latent Heat
147(2)
5.18 Specific Heat
149(6)
5.19 Heat Capacities of an Ideal Gas
155(2)
5.20 Adiabatic Processes for an Ideal Gas
157(5)
5.21 Summary
162(3)
References
163(2)
6 Second Law of Thermodynamics
6.1 Introduction
165(1)
6.2 Heat Engines, Heat Pumps, and Refrigerators
166(1)
6.3 Statements of the Second Law of Thermodynamics
167(1)
6.4 Reversibility
168(1)
6.5 The Carnot Engine
168(3)
6.6 The Concept of Entropy
171(2)
6.7 The Concept of Entropy in Ideal Gas
173(2)
6.8 Entropy for an Ideal Gas With Variable Specific Heats
175(2)
6.9 Entropy for Steam, Liquids, and Solids
177(1)
6.10 The Inequality of Clausius
178(1)
6.11 Entropy Change for an Irreversible Process
179(2)
6.12 The Second Law Applied to a Control Volume
181(4)
Further Reading
183(2)
7 The Kinetic Theory of Gases
7.1 Kinetic Theory Basis for the Ideal Gas Law
185(4)
7.2 Collisions With a Moving Wall
189(1)
7.3 Real Gas Effects and Equations of State
190(1)
7.4 Principle of Corresponding States
191(1)
7.5 Kinetic Theory of Specific Heat
192(3)
7.6 Specific Heat for Solids
195(1)
7.7 Mean Free Path of Molecules in a Gas
196(2)
7.8 Distribution of Mean Free Paths
198(1)
7.9 Coefficient of Viscosity
199(3)
7.10 Thermal Conductivity
202(3)
Reference
204(1)
Further Reading
204(1)
8 Reversible Work, Irreversibility, and Exergy (Availability)
8.1 Reversible Work and Irreversibility
205(3)
8.2 Exergy
208(6)
Further Reading
212(2)
9 Gas Kinetic Theory of Entropy
9.1 Some Elementary Microstate and Macrostate Models
214(6)
9.2 Stirling's Approximation for Large Values of N
220(1)
9.3 The Boltzmann Distribution Law
221(3)
9.4 Estimating the Width of the Most Probable Macrostate Distribution
224(3)
9.5 Estimating the Variation of W With the Total Energy
227(1)
9.6 Analyzing an Approach to Thermal Equilibrium
228(1)
9.7 The Physical Meaning of β
229(1)
9.8 The Concept of Entropy
230(1)
9.9 Partition Functions
231(1)
9.10 Indistinguishable Objects
231(7)
9.11 Evaluation of Partition Functions
238(4)
9.12 Maxwell---Boltzmann Velocity Distribution
242(3)
References
243(2)
10 Thermodynamic Relations
10.1 Thermodynamic Potentials
245(2)
10.2 Maxwell Relations
247(5)
10.3 Clapeyron Equation
252(1)
10.4 Specific Heat Relations Using the Maxwell Relations
253(1)
10.5 The Difference Between the Specific Heats for a Real Gas
254(2)
10.6 Joule--Thomson Coefficient
256(4)
Reference
257(1)
Further Reading
257(3)
11 Heat Transfer
11.1 Fundamental Modes of Heat Transfer
260(1)
11.2 Conduction
260(1)
11.3 Convection
260(1)
11.4 Radiation
261(3)
11.5 Heat Conduction in a Slab
264(1)
11.6 Heat Conduction in Curvilinear Geometries
265(4)
11.7 Convection
269(1)
11.8 Boundary Layer Concept
269(4)
11.9 Dimensionless Numbers or Groups
273(3)
11.10 Correlations for Common Geometries
276(8)
11.11 Enhanced Heat Transfer
284(3)
11.12 Pool Boiling and Forced Convection Boiling
287(3)
11.13 Nucleate Boiling Regimen
290(3)
11.14 Peak Heat Flux
293(3)
11.15 Film Boiling Regimen
296(4)
References
297(1)
Further Reading
297(3)
12 Heat Exchangers
12.1 Heat Exchanger Types
300(1)
12.2 Classification of Heat Exchanger by Construction Type
301(4)
12.3 Condensers
305(1)
12.4 Boilers
306(1)
12.5 Classification According to Compactness
306(1)
12.6 Types of Applications
307(1)
12.7 Cooling Towers
307(1)
12.8 Regenerators and Recuperators
307(6)
12.9 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
313(7)
12.10 Effectiveness-NTU Method for Heat Exchanger Design
320(5)
12.11 Special Operating Conditions
325(1)
12.12 Compact Heat Exchangers
326(6)
References
330(1)
Further Reading
330(2)
13 Gas Power and Air Cycles
13.1 Introduction
332(4)
13.2 Gas Compressors and the Brayton Cycle
336(7)
13.3 The Nonideal Brayton Cycle
343(4)
13.4 The Air Standard Cycle
347(4)
13.5 Equivalent Air Cycle
351(1)
13.6 Carnot Cycle
351(4)
13.7 Otto Cycle
355(6)
13.8 Diesel Cycle
361(5)
13.9 Comparison of Otto and Diesel Cycles
366(2)
13.10 Dual Cycle
368(4)
13.11 Stirling Cycle
372(2)
13.12 Ericsson Cycle
374(2)
13.13 Atkinson Cycle
376(2)
13.14 Lenoir Cycle
378(2)
13.15 Deviation of Actual Cycles from Air-Standard Cycles
380(1)
13.16 Linde---Hampson Cycle
381(2)
13.17 Recuperated Cycle
383(5)
References
385(1)
Further Reading
385(3)
14 The Beginning and Concept of Cryogenics, Basic Principles
14.1 Introduction
388(4)
14.2 Quick Summary of Thermodynamics Application in Science of Cryogenics
392(16)
14.3 Heat Transfer Summary
408(8)
14.4 Momentum Transfer and Process
416(2)
14.5 The Beginning of Cryogenics
418(4)
14.6 Ultra Low-Temperature Refrigeration, Cryogenic State
422(6)
14.7 Process of Cool Down to Cryogenic State
428(29)
14.8 Technical Challenges of Cryogenic Fluids Transfer and Transportation
457(4)
14.9 Containers
461(1)
14.10 Hazards Associated With Cryogenic Materials
462(2)
14.11 Risk Assessment
464(2)
14.12 General Safety Practices
466(1)
14.13 Specific Procedures
467(2)
14.14 Storage of Cryogenic Liquids
469(1)
14.15 Cryogenic Storage Tanks
469(1)
14.16 Emergency Procedures and First Aid
470(1)
14.17 Spills and Disposal of Cryogenics
471(1)
14.18 Training
472(4)
References
472(4)
15 Transport Properties of Solid at Cryogenic State
15.1 Introduction
476(4)
15.2 Thermal Properties
480(17)
15.3 General Laws of Radiation
497(3)
15.4 Emissivity, Absorptivity, and Reflectivity at Cryogenic State
500(3)
15.5 Electrical Properties of Materials at Cryogenic State
503(6)
15.6 Refrigeration and Liquefaction
509(10)
15.7 Overall Cooling Methods
519(1)
15.8 Cryocoolers
519(2)
15.9 Pulse-Tube Refrigerators
521(2)
15.10 Superconductivity at a Cryogenic State
523(3)
15.11 Thermal Insulation
526(1)
15.12 Terms Used in the Cryogenic Field
527(3)
References
527(1)
Further Reading
528(2)
16 Cryogenic Equipment, Systems, and Applications
16.1 Introduction
530(1)
16.2 Compression and Compressors
531(4)
16.3 Expansion Process and Engines
535(3)
16.4 Expansion Machine
538(3)
16.5 Pumps and Valves
541(2)
16.6 Oil Bearing System
543(1)
16.7 Gas Bearing System
543(2)
16.8 Cryogenic Heat Exchangers
545(8)
16.9 The Right Materials in Heat Exchangers (PFHEs)
553(1)
16.10 Cryogenic PFHE Packaging Options
553(4)
16.11 Other Types of Heat Exchangere for Cryogenic Liquid Natural Gases (LNG)
557(4)
16.12 Cryogenic Columns
561(1)
16.13 Cryogenic Liquid Gas Transfer
562(1)
16.14 Cryogenic Storage Stage and Tanks
563(2)
References
564(1)
Appendix A Table and Graph Compilations 565(130)
Appendix B Cryogenic Material Properties Database 695(8)
Index 703
Dr. Bahman Zohuri is currently an Adjunct Professor in Artificial Intelligence Science at Golden Gate University, San Francisco, California, who runs his own consulting company and was previously a consultant at Sandia National Laboratory. Dr. Zohuri earned his bachelors and masters degrees in physics from the University of Illinois. He earned his second masters degree in mechanical engineering, and also his doctorate in nuclear engineering from the University of New Mexico. He owns three patents and has published more than 40 textbooks and numerous journal publications.