Muutke küpsiste eelistusi

E-raamat: Physics of Photorefraction in Polymers

(The University of Manchester, UK), (University of Manchester, UK)
  • Formaat - PDF+DRM
  • Hind: 247,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Empirical studies of photorefraction in polymers have often been based on assumptions of comparability between polymers and photorefractive crystals. In contrast to studies of photorefractive crystals, the authors (both of the U. of Manchester, UK) note, there is little evidence that multilevel photorefractive charge trap models are needed. Accordingly, they apply a simple, single-trap level model of photorefraction to polymers which they argue is sufficient to explain the known behaviors of polymers if the reorientation process is allowed to be dispersive, rather than insisting on a characteristic time scale, as happens in models based in comparability. They provide chapters on the charge photogeneration process, the dispersion in charge transportation, and the electro-optical response that creates a phase hologram from the pattern in the electric field. A final chapter considers a simple model of the dispersion in the reorientational electro-optic dynamics of polymers, in which the number of free parameters to be determined from experiment has been reduced in order to obviate the need for many empirical studies. Annotation ©2004 Book News, Inc., Portland, OR (booknews.com)
Why photorefractive polymer composites?
1(8)
Physical model of photorefraction in polymeric composite media
5(1)
References
6(3)
Photorefraction in amorphous organic materials
9(8)
References
15(2)
Model of the stored photorefractive hologram in amorphous organic media
17(22)
Charge photogeneration
17(1)
Optical patterning
18(2)
Electrical neutrality
20(1)
Collective behavior of the photorefractive system
20(7)
Trap density
27(1)
Electro-optic response in low Tg materials
28(3)
Photorefractive space-charge field
31(5)
Diffraction efficiency
36(1)
References
37(2)
Charge photogeneration
39(22)
Model of charge generation in organics
41(1)
The CT1 state
42(1)
The Wannier exciton
42(1)
Field-assisted dissociation
43(1)
Langevin recombination
43(1)
A special case: PVK and TNF
44(3)
Exciton diffusion as a route to CT1
47(3)
Charge generation field dependence affects photorefractive contrast, spatial phase and rate of response
50(5)
Choice of photosensitizer
55(1)
A simple model of the charge generation limit
56(2)
Effect of a finite mobility on the charge generation limit
58(1)
Pre-illumination effects
59(1)
References
59(2)
Charge transport in amorphous photorefractive media
61(20)
Time-of-flight measurements of mobility
61(3)
Dispersive transport model of Scher and Montroll
64(2)
Origins of dispersion in transport
66(1)
Gaussian disorder model
67(2)
Poole-Frenkel (root E) field dependence of mobility
69(1)
Spatial (positional) disorder
69(2)
Spatial correlations in energy levels
71(2)
How significant is dispersive transport for photorefraction?
73(1)
Holographic time-of-flight experiments
74(1)
Langevin trapping and photorefractive dynamics almost independent of drift mobility
75(3)
Charge generation limit to buildup of space-charge field
78(1)
References
79(2)
Steady-state electro-optics in amorphous photorefractive composites with reorientational effects
81(16)
Theory of electro-optic response
81(8)
Holographic diffraction efficiency
89(3)
The probe wave frame for holographic diffraction
92(2)
Dye figure-of-merit for reorientational and Pockels effects
94(1)
Ellipsometry
95(1)
References
96(1)
The dynamics of chromophore reorientation
97(20)
The rotational diffusion equation (RDE)
97(2)
Solution of the RDE in dispersion-free environments
99(3)
Solutions of RDE in dispersive environments
102(1)
Complete disorder case
103(4)
Arbitrary disorder
107(2)
Index contrast growth in photorefractive polymers
109(1)
Numerical calculation of index contrast growth
109(1)
Analytical form for index-contrast growth
110(4)
Uses for dynamic models of chromophore reorientation
114(1)
References
115(2)
Appendix A Inverse Laplace transform of pm/(p+g) 117(6)
Appendix B Numerical calculation of the incomplete gamma function 123(2)
Index 125


Dave West, D.J. Binks