Part I A Review of Analytical Mechanics and Electromagnetism |
|
|
|
3 | (22) |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
6 | (4) |
|
1.3.1 Force Deriving from a Potential Energy |
|
|
7 | (1) |
|
1.3.2 Electromagnetic Force |
|
|
7 | (2) |
|
|
9 | (1) |
|
1.3.4 Hamilton Principle-Synchronous Trajectories |
|
|
10 | (1) |
|
1.4 Generalized Coordinates |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (2) |
|
1.7 Time-Energy Conjugacy-Hamilton-Jacobi Equation |
|
|
15 | (2) |
|
|
17 | (1) |
|
1.9 Phase Space and State Space |
|
|
18 | (1) |
|
|
19 | (4) |
|
1.10.1 Higher-Order Variational Calculus |
|
|
19 | (1) |
|
1.10.2 Lagrangian Invariance and Gauge Invariance |
|
|
20 | (1) |
|
1.10.3 Variational Calculus with Constraints |
|
|
20 | (1) |
|
1.10.4 An Interesting Example of Extremum Equation |
|
|
21 | (2) |
|
1.10.5 Constant-Energy Surfaces |
|
|
23 | (1) |
|
|
23 | (2) |
|
2 Coordinate Transformations and Invariance Properties |
|
|
25 | (18) |
|
|
25 | (1) |
|
2.2 Canonical Transformations |
|
|
26 | (3) |
|
2.3 An Application of the Canonical Transformation |
|
|
29 | (1) |
|
2.4 Separation-Hamilton's Characteristic Function |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.6 Invariance Properties |
|
|
32 | (3) |
|
|
32 | (1) |
|
2.6.2 Translation of Time |
|
|
33 | (1) |
|
2.6.3 Translation of the Coordinates |
|
|
33 | (1) |
|
2.6.4 Rotation of the Coordinates |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.8 Spherical Coordinates-Angular Momentum |
|
|
36 | (2) |
|
|
38 | (1) |
|
2.10 Action-Angle Variables |
|
|
39 | (2) |
|
|
41 | (1) |
|
2.11.1 Infinitesimal Canonical Transformations |
|
|
41 | (1) |
|
2.11.2 Constants of Motion |
|
|
41 | (1) |
|
|
42 | (1) |
|
3 Applications of the Concepts of Analytical Mechanics |
|
|
43 | (28) |
|
|
43 | (1) |
|
3.2 Particle in a Square Well |
|
|
43 | (1) |
|
3.3 Linear Harmonic Oscillator |
|
|
44 | (1) |
|
|
45 | (2) |
|
3.5 Two-Particle Collision |
|
|
47 | (2) |
|
3.6 Energy Exchange in the Two-Particle Collision |
|
|
49 | (2) |
|
3.7 Central Motion in the Two-Particle Interaction |
|
|
51 | (1) |
|
|
52 | (1) |
|
3.9 System of Particles near an Equilibrium Point |
|
|
53 | (2) |
|
3.10 Diagonalization of the Hamiltonian Function |
|
|
55 | (2) |
|
3.11 Periodic Potential Energy |
|
|
57 | (3) |
|
3.12 Energy-Momentum Relation in a Periodic Potential Energy |
|
|
60 | (1) |
|
|
61 | (9) |
|
3.13.1 Comments on the Linear Harmonic Oscillator |
|
|
61 | (1) |
|
3.13.2 Degrees of Freedom and Coordinate Separation |
|
|
61 | (1) |
|
3.13.3 Comments on the Normal Coordinates |
|
|
62 | (1) |
|
3.13.4 Areal Velocity in the Central-Motion Problem |
|
|
63 | (1) |
|
3.13.5 Initial Conditions in the Central-Motion Problem |
|
|
64 | (1) |
|
3.13.6 The Coulomb Field in the Attractive Case |
|
|
65 | (2) |
|
3.13.7 Dynamic Relations of Special Relativity |
|
|
67 | (1) |
|
3.13.8 Collision of Relativistic Particles |
|
|
68 | (2) |
|
3.13.9 Energy Conservation in Charged-Particles' Interaction |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (16) |
|
|
71 | (1) |
|
4.2 Extension of the Lagrangian Formalism |
|
|
71 | (3) |
|
4.3 Lagrangian Function for the Wave Equation |
|
|
74 | (1) |
|
|
75 | (2) |
|
4.5 Potentials and Gauge Transformations |
|
|
77 | (2) |
|
4.6 Lagrangian Density for the Maxwell Equations |
|
|
79 | (1) |
|
|
80 | (1) |
|
4.8 Helmholtz Equation in a Finite Domain |
|
|
81 | (1) |
|
4.9 Solution of the Helmholtz Equation in an Infinite Domain |
|
|
82 | (1) |
|
4.10 Solution of the Wave Equation in an Infinite Domain |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
4.12.1 Invariance of the Euler Equations |
|
|
85 | (1) |
|
4.12.2 Wave Equations for the E and B Fields |
|
|
85 | (1) |
|
4.12.3 Comments on the Boundary-Value Problem |
|
|
86 | (1) |
|
|
86 | (1) |
|
5 Applications of the Concepts of Electromagnetism |
|
|
87 | (24) |
|
|
87 | (1) |
|
5.2 Potentials Generated by a Point-Like Charge |
|
|
87 | (2) |
|
5.3 Energy Continuity-Poynting Vector |
|
|
89 | (1) |
|
|
90 | (1) |
|
5.5 Modes of the Electromagnetic Field |
|
|
91 | (2) |
|
5.6 Energy of the Electromagnetic Field in Terms of Modes |
|
|
93 | (2) |
|
5.7 Momentum of the Electromagnetic Field in Terms of Modes |
|
|
95 | (1) |
|
5.8 Modes of the Electromagnetic Field in an Infinite Domain |
|
|
96 | (1) |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
99 | (8) |
|
5.11.1 Fields Generated by a Point-Like Charge |
|
|
99 | (2) |
|
5.11.2 Power Radiated by a Point-Like Charge |
|
|
101 | (1) |
|
5.11.3 Decay of Atoms According to the Classical Model |
|
|
102 | (2) |
|
5.11.4 Comments about the Field's Expansion into Modes |
|
|
104 | (1) |
|
5.11.5 Finiteness of the Total Energy |
|
|
105 | (1) |
|
5.11.6 Analogies between Mechanics and Geometrical Optics |
|
|
106 | (1) |
|
|
107 | (4) |
Part II Introductory Concepts to Statistical and Quantum Mechanics |
|
|
6 Classical Distribution Function and Transport Equation |
|
|
111 | (18) |
|
|
111 | (1) |
|
6.2 Distribution Function |
|
|
111 | (2) |
|
6.3 Statistical Equilibrium |
|
|
113 | (3) |
|
6.4 Maxwell-Boltzmann Distribution |
|
|
116 | (3) |
|
6.5 Boltzmann Transport Equation |
|
|
119 | (1) |
|
|
120 | (7) |
|
6.6.1 Momentum and Angular Momentum at Equilibrium |
|
|
120 | (1) |
|
6.6.2 Averages Based on the Maxwell-Boltzmann Distribution |
|
|
121 | (2) |
|
6.6.3 Boltzmann's H-Theorem |
|
|
123 | (1) |
|
6.6.4 Paradoxes - Kac-Ring Model |
|
|
124 | (1) |
|
6.6.5 Equilibrium Limit of the Boltzmann Transport Equation |
|
|
125 | (2) |
|
|
127 | (2) |
|
7 From Classical Mechanics to Quantum Mechanics |
|
|
129 | (26) |
|
|
129 | (1) |
|
7.2 Planetary Model of the Atom |
|
|
130 | (4) |
|
7.3 Experiments Contradicting the Classical Laws |
|
|
134 | (6) |
|
|
140 | (7) |
|
7.4.1 Planck's Solution of the Black-Body Problem |
|
|
141 | (1) |
|
7.4.2 Einstein's Solution of the Photoelectric Effect |
|
|
142 | (1) |
|
7.4.3 Explanation of the Compton Effect |
|
|
142 | (1) |
|
|
143 | (2) |
|
7.4.5 De Broglie's Hypothesis |
|
|
145 | (2) |
|
7.5 Heuristic Derivation of the Schrodinger Equation |
|
|
147 | (2) |
|
|
149 | (4) |
|
|
150 | (2) |
|
|
152 | (1) |
|
7.6.3 Need of a Description of Probabilities |
|
|
153 | (1) |
|
7.7 Born's Interpretation of the Wave Function |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (1) |
|
8 Time-Independent Schrodinger Equation |
|
|
155 | (20) |
|
|
155 | (1) |
|
8.2 Properties of the Time-Independent Schrodinger Equation |
|
|
155 | (5) |
|
8.2.1 Schrodinger Equation for a Free Particle |
|
|
157 | (1) |
|
8.2.2 Schrodinger Equation for a Particle in a Box |
|
|
158 | (1) |
|
8.2.3 Lower Energy Bound in the Schrodinger Equation |
|
|
159 | (1) |
|
8.3 Norm of a Function-Scalar Product |
|
|
160 | (2) |
|
8.3.1 Adjoint Operators and Hermitean Operators |
|
|
162 | (1) |
|
8.4 Eigenvalues and Eigenfunctions of an Operator |
|
|
162 | (6) |
|
8.4.1 Eigenvalues of Hermitean Operators |
|
|
163 | (1) |
|
8.4.2 Gram-Schmidt Orthogonalization |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (1) |
|
8.5 Hamiltonian Operator and Momentum Operator |
|
|
168 | (1) |
|
|
169 | (5) |
|
8.6.1 Examples of Hermitean Operators |
|
|
169 | (1) |
|
8.6.2 A Collection of Operators' Definitions and Properties |
|
|
170 | (3) |
|
8.6.3 Examples of Commuting Operators |
|
|
173 | (1) |
|
8.6.4 Momentum and Energy of a Free Particle |
|
|
173 | (1) |
|
|
174 | (1) |
|
9 Time-Dependent Schrodinger Equation |
|
|
175 | (12) |
|
|
175 | (1) |
|
9.2 Superposition Principle |
|
|
175 | (3) |
|
9.3 Time-Dependent Schrodinger Equation |
|
|
178 | (1) |
|
9.4 Continuity Equation and Norm Conservation |
|
|
179 | (1) |
|
9.5 Hamiltonian Operator of a Charged Particle |
|
|
180 | (1) |
|
9.6 Approximate Form of the Wave Packet for a Free Particle |
|
|
181 | (2) |
|
|
183 | (3) |
|
9.7.1 About the Units of the Wave Function |
|
|
183 | (1) |
|
9.7.2 An Application of the Semiclassical Approximation |
|
|
183 | (1) |
|
9.7.3 Polar Form of the Schrodinger Equation |
|
|
184 | (1) |
|
9.7.4 Effect of a Gauge Transformation on the Wave Function |
|
|
185 | (1) |
|
|
186 | (1) |
|
10 General Methods of Quantum Mechanics |
|
|
187 | (14) |
|
|
187 | (1) |
|
|
187 | (2) |
|
|
189 | (1) |
|
10.4 Eigenfunctions of Commuting Operators |
|
|
190 | (2) |
|
10.5 Expectation Value and Uncertainty |
|
|
192 | (1) |
|
10.6 Heisenberg Uncertainty Relation |
|
|
193 | (1) |
|
10.7 Time Derivative of the Expectation Value |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
10.9.1 Minimum-Uncertainty Wave Function |
|
|
196 | (1) |
|
|
197 | (4) |
Part III Applications of the Schrodinger Equation |
|
|
|
201 | (16) |
|
|
201 | (1) |
|
11.2 Step-Like Potential Energy |
|
|
201 | (5) |
|
11.2.1 Case A: 0 < E < Vo |
|
|
202 | (1) |
|
|
203 | (3) |
|
|
206 | (4) |
|
11.3.1 Case A: 0 < E < V0 |
|
|
206 | (2) |
|
11.3.2 Case B: 0 < V0 < E |
|
|
208 | (2) |
|
11.4 Energy Barrier of a General Form |
|
|
210 | (3) |
|
|
213 | (2) |
|
|
215 | (2) |
|
12 Cases Related to the Linear Harmonic Oscillator |
|
|
217 | (10) |
|
|
217 | (1) |
|
12.2 Linear Harmonic Oscillator |
|
|
217 | (4) |
|
12.3 Quantization of the Electromagnetic Field's Energy |
|
|
221 | (2) |
|
12.4 Quantization of the Electromagnetic Field's Momentum |
|
|
223 | (1) |
|
12.5 Quantization of a Diagonalized Hamiltonian Function |
|
|
224 | (1) |
|
|
225 | (2) |
|
12.6.1 Comments About the Linear Harmonic Oscillator |
|
|
225 | (2) |
|
13 Other Examples of the Schrodinger Equation |
|
|
227 | (26) |
|
|
227 | (1) |
|
13.2 Properties of the One-Dimensional Schrodinger Equation |
|
|
227 | (2) |
|
13.3 Localized States-Operator's Factorization |
|
|
229 | (5) |
|
13.3.1 Factorization Method |
|
|
229 | (2) |
|
13.3.2 First-Order Operators |
|
|
231 | (1) |
|
13.3.3 The Eigenfunctions Corresponding to 1 < n |
|
|
232 | (1) |
|
|
233 | (1) |
|
13.4 Schrodinger Equation with a Periodic Coefficient |
|
|
234 | (2) |
|
13.5 Schrodinger Equation for a Central Force |
|
|
236 | (4) |
|
13.5.1 Angular Part of the Equation |
|
|
237 | (2) |
|
13.5.2 Radial Part of the Equation in the Coulomb Case |
|
|
239 | (1) |
|
|
240 | (11) |
|
13.6.1 Operators Associated to Angular Momentum |
|
|
240 | (2) |
|
13.6.2 Eigenvalues of the Angular Equation |
|
|
242 | (1) |
|
13.6.3 Eigenfunctions of the Angular Equation |
|
|
243 | (3) |
|
13.6.4 Eigenvalues of the Radial Equation-Coulomb Case |
|
|
246 | (1) |
|
13.6.5 Eigenfunctions of the Radial Equation-Coulomb Case |
|
|
247 | (1) |
|
13.6.6 Transmission Matrix |
|
|
248 | (3) |
|
|
251 | (2) |
|
14 Time-Dependent Perturbation Theory |
|
|
253 | (16) |
|
|
253 | (1) |
|
14.2 Discrete Eigenvalues |
|
|
254 | (1) |
|
14.3 First-Order Perturbation |
|
|
255 | (1) |
|
|
256 | (1) |
|
14.5 Degenerate Energy Levels |
|
|
257 | (1) |
|
14.6 Continuous Energy Levels |
|
|
258 | (3) |
|
14.7 Screened Coulomb Perturbation |
|
|
261 | (1) |
|
|
262 | (3) |
|
14.8.1 Perturbation Constant in Time |
|
|
262 | (1) |
|
14.8.2 Harmonic Perturbation |
|
|
263 | (2) |
|
14.8.3 Fermi's Golden Rule |
|
|
265 | (1) |
|
14.8.4 Transitions from Discrete to Continuous Levels |
|
|
265 | (1) |
|
|
265 | (4) |
Part IV Systems of Interacting Particles-Quantum Statistics |
|
|
|
269 | (24) |
|
|
269 | (1) |
|
15.2 Wave Function of a Many-Particle System |
|
|
269 | (2) |
|
15.3 Symmetry of Functions and Operators |
|
|
271 | (1) |
|
15.4 Conservation of Symmetry in Time |
|
|
272 | (1) |
|
|
273 | (4) |
|
|
275 | (2) |
|
15.6 Pauli Exclusion Principle |
|
|
277 | (1) |
|
15.7 Conservative Systems of Particles |
|
|
278 | (2) |
|
15.8 Equilibrium Statistics in the Quantum Case |
|
|
280 | (6) |
|
15.8.1 Fermi-Dirac Statistics |
|
|
283 | (2) |
|
15.8.2 Bose-Einstein Statistics |
|
|
285 | (1) |
|
|
286 | (6) |
|
15.9.1 Connection with Thermodynamic Functions |
|
|
286 | (1) |
|
15.9.2 Density of States for a Particle in a Three-Dimensional Box |
|
|
287 | (2) |
|
15.9.3 Density of States for a Two- or One-Dimensional Box |
|
|
289 | (1) |
|
15.9.4 Density of States for Photons |
|
|
290 | (1) |
|
15.9.5 Derivation of Planck's Law |
|
|
291 | (1) |
|
|
292 | (1) |
|
16 Separation of Many-Particle Systems |
|
|
293 | (12) |
|
|
293 | (1) |
|
16.2 System of Interacting Electrons and Nuclei |
|
|
294 | (1) |
|
16.3 Adiabatic Approximation |
|
|
295 | (2) |
|
|
297 | (2) |
|
16.5 Hartree-Fock Equations |
|
|
299 | (1) |
|
16.6 Schrodinger Equation for the Nuclei |
|
|
300 | (1) |
|
|
301 | (4) |
|
|
301 | (4) |
Part V Applications to Semiconducting Crystals |
|
|
|
305 | (64) |
|
|
305 | (1) |
|
|
306 | (3) |
|
|
309 | (2) |
|
17.4 Wigner-Seitz Cell-Brillouin Zone |
|
|
311 | (1) |
|
17.5 Translation Operators |
|
|
312 | (6) |
|
|
314 | (1) |
|
17.5.2 Periodic Operators |
|
|
315 | (1) |
|
17.5.3 Periodic Boundary Conditions |
|
|
316 | (2) |
|
17.6 Schrodinger Equation in a Periodic Lattice |
|
|
318 | (26) |
|
17.6.1 Wave Packet in a Periodic Potential |
|
|
321 | (1) |
|
17.6.2 Parabolic-Band Approximation |
|
|
322 | (4) |
|
17.6.3 Density of States in the Parabolic-Band Approximation |
|
|
326 | (1) |
|
17.6.4 Crystals of Si, Ge, and GaAs |
|
|
327 | (1) |
|
17.6.5 Band Structure of Si, Ge, and GaAs |
|
|
328 | (7) |
|
17.6.6 Further Comments About the Band Structure |
|
|
335 | (2) |
|
|
337 | (2) |
|
17.6.8 Subbands in a Periodic Lattice |
|
|
339 | (5) |
|
17.7 Calculation of Vibrational Spectra |
|
|
344 | (7) |
|
17.7.1 Labeling the Degrees of Freedom- Dynamic Matrix |
|
|
346 | (1) |
|
17.7.2 Application of the Bloch Theorem |
|
|
347 | (2) |
|
17.7.3 Properties of the Eigenvalues and Eigenvectors |
|
|
349 | (2) |
|
|
351 | (18) |
|
17.8.1 Crystal Planes and Directions in Cubic Crystals |
|
|
351 | (2) |
|
17.8.2 Examples of Translation Operators |
|
|
353 | (1) |
|
17.8.3 Symmetries of the Hamiltonian Operator |
|
|
354 | (2) |
|
17.8.4 Kronig-Penney Model |
|
|
356 | (4) |
|
17.8.5 Linear, Monatomic Chain |
|
|
360 | (3) |
|
17.8.6 Linear, Diatomic Chain |
|
|
363 | (4) |
|
|
367 | (2) |
|
18 Electrons and Holes in Semiconductors at Equilibrium |
|
|
369 | (34) |
|
|
369 | (1) |
|
18.2 Equilibrium Concentration of Electrons and Holes |
|
|
370 | (4) |
|
18.3 Intrinsic Concentration |
|
|
374 | (3) |
|
18.4 Uniform Distribution of Impurities |
|
|
377 | (14) |
|
18.4.1 Donor-Type Impurities |
|
|
379 | (6) |
|
18.4.2 Acceptor-Type Impurities |
|
|
385 | (5) |
|
18.4.3 Compensation Effect |
|
|
390 | (1) |
|
18.5 Non-Uniform Distribution of Dopants |
|
|
391 | (2) |
|
|
393 | (3) |
|
|
396 | (7) |
|
18.7.1 Si, Ge, GaAs in the Manufacturing of Integrated Circuits |
|
|
396 | (1) |
|
18.7.2 Qualitative Analysis of the Impurity Levels |
|
|
397 | (1) |
|
18.7.3 Position of the Impurity Levels |
|
|
398 | (5) |
Part VI Transport Phenomena in Semiconductors |
|
|
19 Mathematical Model of Semiconductor Devices |
|
|
403 | (48) |
|
|
403 | (1) |
|
19.2 Equivalent Hamiltonian Operator |
|
|
404 | (7) |
|
|
405 | (2) |
|
19.2.2 Expectation Values-Crystal Momentum |
|
|
407 | (2) |
|
19.2.3 Dynamics in the Parabolic-Band Approximation |
|
|
409 | (2) |
|
19.3 Dynamics in the Phase Space |
|
|
411 | (8) |
|
|
413 | (3) |
|
19.3.2 Point-Like Collisions |
|
|
416 | (2) |
|
19.3.3 Perturbative Form of the BTE |
|
|
418 | (1) |
|
19.4 Moments Expansion of the BTE |
|
|
419 | (10) |
|
|
422 | (3) |
|
19.4.2 Hierarchical Models |
|
|
425 | (4) |
|
19.5 Hydrodynamic and Drift-Diffusion Models |
|
|
429 | (15) |
|
|
430 | (1) |
|
|
431 | (3) |
|
19.5.3 DD Model for the Valence Band |
|
|
434 | (2) |
|
19.5.4 Coupling with Maxwell's Equations |
|
|
436 | (2) |
|
19.5.5 Semiconductor-Device Model |
|
|
438 | (1) |
|
19.5.6 Boundary Conditions |
|
|
439 | (3) |
|
19.5.7 Quasi-Fermi Potentials |
|
|
442 | (1) |
|
19.5.8 Poisson Equation in a Semiconductor |
|
|
443 | (1) |
|
|
444 | (5) |
|
19.6.1 Comments on the Equivalent Hamiltonian Operator |
|
|
444 | (1) |
|
19.6.2 Special Cases of Anisotropy |
|
|
445 | (1) |
|
19.6.3 α-Moment at Equilibrium |
|
|
445 | (1) |
|
19.6.4 Closure Conditions |
|
|
445 | (2) |
|
19.6.5 Matthiessen's Rule |
|
|
447 | (1) |
|
19.6.6 Order of Magnitude of Mobility and Conductivity |
|
|
448 | (1) |
|
19.6.7 A Resume of the Transport Model's Derivation |
|
|
449 | (1) |
|
|
449 | (2) |
|
20 Generation-Recombination and Mobility |
|
|
451 | (34) |
|
|
451 | (1) |
|
20.2 Net Thermal Recombinations |
|
|
451 | (11) |
|
20.2.1 Direct Thermal Recombinations |
|
|
452 | (3) |
|
20.2.2 Trap-Assisted Thermal Recombinations |
|
|
455 | (2) |
|
20.2.3 Shockley-Read-Hall Theory |
|
|
457 | (5) |
|
20.3 Auger Recombination and Impact Ionization |
|
|
462 | (3) |
|
20.3.1 Strong Impact Ionization |
|
|
465 | (1) |
|
|
465 | (3) |
|
20.5 Macroscopic Mobility Models |
|
|
468 | (7) |
|
20.5.1 Example of Phonon Collision |
|
|
469 | (2) |
|
20.5.2 Example of Ionized-Impurity Collision |
|
|
471 | (1) |
|
20.5.3 Bulk and Surface Mobilities |
|
|
472 | (1) |
|
20.5.4 Beyond Analytical Modeling of Mobility |
|
|
473 | (2) |
|
|
475 | (10) |
|
20.6.1 Transition Rates in the SRH Recombination Function |
|
|
475 | (3) |
|
20.6.2 Coefficients of the Auger and Impact-Ionization Events |
|
|
478 | (1) |
|
20.6.3 Total Recombination-Generation Rate |
|
|
479 | (1) |
|
20.6.4 Screened Coulomb Potential |
|
|
480 | (5) |
Part VII Basic Semiconductor Devices |
|
|
|
485 | (24) |
|
|
485 | (1) |
|
21.2 P-N Junction in Equilibrium |
|
|
485 | (7) |
|
21.2.1 Built-In Potential |
|
|
486 | (3) |
|
21.2.2 Space-Charge and Quasi-Neutral Regions |
|
|
489 | (3) |
|
21.3 Shockley Theory of the P-N Junction |
|
|
492 | (6) |
|
21.3.1 Derivation of the 1(V) Characteristic |
|
|
496 | (2) |
|
21.4 Depletion Capacitance of the Abrupt P-N Junction |
|
|
498 | (3) |
|
21.5 Avalanche Due to Impact Ionization |
|
|
501 | (3) |
|
|
504 | (4) |
|
21.6.1 Weak-Injection Limit of the Drift-Diffusion Equations |
|
|
504 | (1) |
|
21.6.2 Shockley's Boundary Conditions |
|
|
505 | (1) |
|
21.6.3 Depletion Capacitance-Arbitrary Doping Profile |
|
|
506 | (2) |
|
21.6.4 Order of Magnitude of Junction's Parameters |
|
|
508 | (1) |
|
|
508 | (1) |
|
|
509 | (32) |
|
|
509 | (1) |
|
22.2 Metal-Insulator-Semiconductor Capacitor |
|
|
510 | (10) |
|
|
512 | (3) |
|
22.2.2 Relation Between Surface Potential and Gate Voltage |
|
|
515 | (5) |
|
22.3 Capacitance of the MOS Structure |
|
|
520 | (2) |
|
22.4 Simplified Expression of the Inversion Charge |
|
|
522 | (4) |
|
22.4.1 Quantitative Relations in the MOS Capacitor |
|
|
524 | (2) |
|
22.5 Insulated-Gate Field-Effect Transistor-MOSFET |
|
|
526 | (1) |
|
22.6 N-Channel MOSFET-Current-Voltage Characteristics |
|
|
527 | (7) |
|
22.6.1 Gradual-Channel Approximation |
|
|
529 | (1) |
|
22.6.2 Differential Conductances and Drain Current |
|
|
530 | (4) |
|
|
534 | (7) |
|
22.7.1 Poisson's Equation in the MOSFET Channel |
|
|
534 | (3) |
|
22.7.2 Inversion-Layer Charge and Mobility Degradation |
|
|
537 | (4) |
|
|
Part VIII Miscellany |
|
|
|
541 | (16) |
|
|
541 | (1) |
|
|
542 | (3) |
|
|
545 | (1) |
|
23.4 Diffusion Equation-Model Problem |
|
|
546 | (1) |
|
23.5 Predeposition and Drive-in Diffusion |
|
|
547 | (6) |
|
|
548 | (3) |
|
23.5.2 Drive-in Diffusion |
|
|
551 | (2) |
|
23.6 Generalization of the Model Problem |
|
|
553 | (1) |
|
|
553 | (3) |
|
23.7.1 Generation and Destruction of Particles |
|
|
553 | (1) |
|
|
554 | (1) |
|
|
554 | (1) |
|
23.7.4 Alternative Expression of the Dose |
|
|
555 | (1) |
|
23.7.5 The Initial Condition of the Predeposition Step |
|
|
555 | (1) |
|
|
556 | (1) |
|
24 Thermal Oxidation-Layer Deposition |
|
|
557 | (18) |
|
|
557 | (1) |
|
|
558 | (2) |
|
24.3 Oxide-Growth Kinetics |
|
|
560 | (2) |
|
24.4 Linear-Parabolic Model of the Oxide Growth |
|
|
562 | (1) |
|
24.5 Layer Deposition and Selective Oxide Growth |
|
|
563 | (3) |
|
|
566 | (1) |
|
|
567 | (1) |
|
|
568 | (4) |
|
24.8.1 An Apparent Contradiction |
|
|
568 | (1) |
|
24.8.2 Elementary Contributions to the Layer's Volume |
|
|
569 | (1) |
|
24.8.3 Features of the Oxide Growth and Epitaxial Growth |
|
|
570 | (1) |
|
|
570 | (1) |
|
24.8.5 Molecular Beam Epitaxy |
|
|
571 | (1) |
|
24.8.6 Secondary Reaction in the Epitaxial Growth |
|
|
571 | (1) |
|
|
572 | (3) |
|
25 Measuring the Semiconductor Parameters |
|
|
575 | (10) |
|
|
575 | (1) |
|
25.2 Lifetime Measurement |
|
|
575 | (3) |
|
25.3 Mobility Measurement-Haynes-Shockley Experiment |
|
|
578 | (3) |
|
25.4 Hall-Voltage Measurement |
|
|
581 | (2) |
|
25.5 Measurement of Doping Profiles |
|
|
583 | (2) |
Appendix A Vector and Matrix Analysis |
|
585 | (10) |
Appendix B Coordinates |
|
595 | (8) |
Appendix C Special Integrals |
|
603 | (22) |
Appendix D Tables |
|
625 | (2) |
Solutions |
|
627 | (18) |
Bibliography |
|
645 | |