Muutke küpsiste eelistusi

E-raamat: Pipeline for Automated Code Generation from Backlog Items (PACGBI): Analysis of Potentials and Limitations of Generative AI for Web Development

  • Formaat: PDF+DRM
  • Sari: BestMasters
  • Ilmumisaeg: 31-Jan-2025
  • Kirjastus: Springer Vieweg
  • Keel: eng
  • ISBN-13: 9783658472085
  • Formaat - PDF+DRM
  • Hind: 92,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: BestMasters
  • Ilmumisaeg: 31-Jan-2025
  • Kirjastus: Springer Vieweg
  • Keel: eng
  • ISBN-13: 9783658472085

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book investigates the potential and limitations of using Generative AI (GenAI) in terms of quality and capability in agile web development projects using React. For this purpose, the Pipeline for Automated Code Generation from Backlog Items (PACGBI) was implemented and used in a case study to analyse the AI-generated code with a mix-method approach. The findings demonstrated the ability of GenAI to rapidly generate syntactically correct and functional code with Zero-Shot prompting. The PACGBI showcases the potential for GenAI to automate the development process, especially for tasks with low complexity. However, this research also identified challenges with code formatting, maintainability, and user interface implementation, attributed to the lack of detailed functional descriptions of the task and the appearance of hallucinations. Despite these limitations, the book underscores the significant potential of GenAI to accelerate the software development process and highlights the need for a hybrid approach that combines GenAI's strengths with human expertise for complex tasks. Further, the findings provide valuable insights for practitioners considering GenAI integration into their development processes and set a foundation for future research in this field.

Introduction.- Theoretical Background.- Related Work.- Method.- Implementation.- Results.- Discussion.- Summary.

Mahja Sarschar, MSc is a graduate of the study program computer science with focus on media at the HTW Berlin. Her research bridges the gap between advancements in Generative AI and their possible applications in the software industry.