Muutke küpsiste eelistusi

E-raamat: Planar Maps, Random Walks and Circle Packing: Ecole d'Ete de Probabilites de Saint-Flour XLVIII - 2018

  • Formaat: EPUB+DRM
  • Sari: Lecture Notes in Mathematics 2243
  • Ilmumisaeg: 04-Oct-2019
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030279684
  • Formaat - EPUB+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Lecture Notes in Mathematics 2243
  • Ilmumisaeg: 04-Oct-2019
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030279684

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This open access book focuses on the interplay between random walks on planar maps and Koebes circle packing theorem. Further topics covered include electric networks, the HeSchramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits.  One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided.





A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebes circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps.





The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.

Arvustused

The most remarkable aspect of the Lecture Notes is the reader-friendly structure and the style in which it has been written. There are masses of examples either worked out in the text or left for the reader. A number of facts are equipped with graphical illustrations. The importance of this Lecture Notes by the author both from the practical and from the theoretical standpoint is unquestionable. (Viktor Ohanyan, zbMATH 1471.60007, 2021)

The whole material is very nicely presented and the book may serve as the support for a graduate course in probability. (Nicolas Curien, Mathematical Reviews, November, 2020)

1 Introduction
1(10)
1.1 The Circle Packing Theorem
1(6)
1.2 Probabilistic Applications
7(4)
2 Random Walks and Electric Networks
11(22)
2.1 Harmonic Functions and Voltages
11(3)
2.2 Flows and Currents
14(3)
2.3 The Effective Resistance of a Network
17(5)
2.4 Energy
22(3)
2.5 Infinite Graphs
25(4)
2.6 Random Paths
29(1)
2.7 Exercises
30(3)
3 The Circle Packing Theorem
33(14)
3.1 Planar Graphs, Maps and Embeddings
33(3)
3.2 Proof of the Circle Packing Theorem
36(11)
4 Parabolic and Hyperbolic Packings
47(14)
4.1 Infinite Planar Maps
47(1)
4.2 The Ring Lemma and Infinite Circle Packings
48(2)
4.3 Statement of the He-Schramm Theorem
50(2)
4.4 Proof of the He-Schramm Theorem
52(7)
4.5 Exercises
59(2)
5 Planar Local Graph Limits
61(12)
5.1 Local Convergence of Graphs and Maps
61(3)
5.2 The Magic Lemma
64(3)
5.3 Recurrence of Bounded Degree Planar Graph Limits
67(4)
5.4 Exercises
71(2)
6 Recurrence of Random Planar Maps
73(16)
6.1 Star-Tree Transform
73(3)
6.2 Stationary Random Graphs and Markings
76(6)
6.3 Proof of Theorem 6.1
82(7)
7 Uniform Spanning Trees of Planar Graphs
89(16)
7.1 Introduction
89(2)
7.2 Basic Properties of the UST
91(2)
7.3 Limits over Exhaustions: The Free and Wired USF
93(2)
7.4 Planar Duality
95(2)
7.5 Connectivity of the Free Forest
97(6)
7.6 Exercises
103(2)
8 Related Topics
105(8)
References 113(4)
Index 117