Muutke küpsiste eelistusi

E-raamat: Planar Waveguide Optical Sensors: From Theory to Applications

  • Formaat: PDF+DRM
  • Sari: Engineering Materials
  • Ilmumisaeg: 30-Aug-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319351407
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Engineering Materials
  • Ilmumisaeg: 30-Aug-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319351407

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book concentrates on the design and development of integrated optic waveguide sensors using silicon based materials. The implementation of such system as a tool for detecting adulteration in petroleum based products as well as its use for detection of glucose level in diabetes are highlighted. The first chapters are dedicated to the development of the theoretical model while the final chapters are focused on the different applications of such sensors. It gives the readers the full background in the field of sensors, reasons for using silicon oxynitride as a potential waveguide material as well as its fabrication processes and possible uses.

Preface.- Introduction.- Brief Review on Integrated Planar Waveguide Based Optical Sensor.- Fabrication Process and Techniques for Integrated Devices and waveguide materials.- Modelling, design and development of integrated planar waveguide optical sensor.- Waveguide sensor for detecting adulteration in petroleum based products.- Optical waveguide sensor as detection element for lab on a chip sensing application.- Outlook.- Summary.- Glossary.- Subject Index. 
1 Introduction to Planar Waveguide Optical Sensor
1(8)
Aradhana Dutta
1.1 Introduction---General Perspective
1(2)
1.2 Planar Waveguide Optical Sensor: Its Uniqueness
3(1)
1.3 Integrated Planar Waveguide Optical Sensor: Present State of the Art
4(1)
1.4 Organization of This Book
5(4)
References
6(3)
2 Brief Review on Integrated Planar Waveguide-Based Optical Sensor
9(62)
Aradhana Dutta
2.1 Introduction
9(1)
2.2 Fundamentals of Optical Waveguide
10(17)
2.2.1 Wave Equation in Symmetric Slab Waveguide
12(2)
2.2.2 Planar Waveguides and the Modes
14(8)
2.2.3 Introduction to Numerical Methods for Approximate Modal Analysis
22(5)
2.3 Optical Sensor and Its Classification
27(11)
2.3.1 Fiber Optic (FO) Sensors and Classification
28(3)
2.3.2 Integrated Optic Waveguide Sensors
31(4)
2.3.3 Basic Principle: Optical Planar Waveguide Sensors
35(3)
2.3.4 Comparison Between Fiber Optic Sensor and Integrated Optical Planar Waveguide Sensor
38(1)
2.4 Performance Parameters of Optical Sensors
38(2)
2.4.1 Sensor Sensitivity
38(1)
2.4.2 Limit of Detection (LOD)
39(1)
2.4.3 Limit of Quantization (LOQ)
39(1)
2.4.4 Selectivity or Specificity
39(1)
2.4.5 Sample Volume
40(1)
2.5 Review on Planar Waveguide Materials and Fabrication Technologies
40(5)
2.6 Optical Planar Waveguide Sensor and Applications---A Review Study
45(16)
2.6.1 Refractometric Optical Sensing and Petroleum Fuel Adulteration
48(6)
2.6.2 Integrated Optical Waveguide Sensor as Detection Element for Laboratory on a Chip-Sensing Application
54(7)
2.7 Conclusion
61(10)
References
61(10)
3 Fabrication Process and Techniques for Integrated Devices and Waveguide Material
71(16)
Bidyut Deka
3.1 Introduction
71(1)
3.2 Basic Fabrication Process and Techniques for Integrated Devices
72(12)
3.2.1 Different Fabrication Tools
74(1)
3.2.2 Cleaning of Wafer for Fabrication
75(1)
3.2.3 Deposition of Thin Film
76(4)
3.2.4 Patterning Techniques
80(2)
3.2.5 Processing Techniques
82(2)
3.3 Conclusion
84(3)
References
84(3)
4 Theoretical Modeling, Design, and Development of Integrated Planar Waveguide Optical Sensor
87(50)
Aradhana Dutta
Partha Pratim Sahu
4.1 Introduction
87(1)
4.2 Proposed Waveguide Structure for Sensor
88(15)
4.2.1 Solution of the Wave Equation for Planar Waveguide Sensor
90(6)
4.2.2 Waveguide Sensitivity
96(5)
4.2.3 Power Propagation in the Structure
101(2)
4.3 Design of the Proposed Sensor Structure
103(2)
4.3.1 Estimation of Sample Volume
104(1)
4.4 Fabrication of the Designed Sensor
105(24)
4.4.1 Fabrication Processes
105(24)
4.5 Experimental Setup for Sensing Application
129(4)
4.5.1 Measurements
130(1)
4.5.2 Results and Characterization
131(2)
4.6 Conclusion
133(4)
References
134(3)
5 Waveguide Sensor for Detecting Adulteration, in Petroleum-Based Products
137(14)
Aradhana Dutta
Partha Pratim Sahu
5.1 Introduction
137(1)
5.2 Design of the Waveguide Sensor for Adulteration Applications
138(6)
5.2.1 Sensitivity Response
140(1)
5.2.2 Limit of Detection (LOD)
141(1)
5.2.3 Estimation of Sample Volume
141(1)
5.2.4 Estimation of Detection Time
142(1)
5.2.5 Materials and Methods
143(1)
5.3 Experimental Results and Discussion
144(4)
5.4 Performance Comparison
148(1)
5.5 Conclusion
148(3)
References
149(2)
6 Optical Waveguide Sensor as Detection Element for Lab on a Chip Sensing Application
151(22)
Aradhana Dutta
Partha Pratim Sahu
6.1 Introduction
151(1)
6.2 Sensing Concept and Design
152(11)
6.2.1 Lab on a Chip
153(1)
6.2.2 Design of Sensor with Interfacing Capillary Tube
154(6)
6.2.3 Sensitivity
160(1)
6.2.4 Limit of Detection (LOD)
161(1)
6.2.5 Estimation of Detection Time
161(1)
6.2.6 Estimation of Sample Volume
162(1)
6.3 Fabrication of Waveguide Sensor
163(1)
6.4 Experiment for the Diabetic Study
164(1)
6.4.1 Preparation of the Rat Model
164(1)
6.4.2 Assessment of Diabetes and Hyperglycemia
164(1)
6.5 Measurement Setup
165(2)
6.5.1 Rapid Testing of Blood Plasma Glucose Level of Rat
165(2)
6.6 Comparison Between the Existing Techniques and Our Proposed Technique
167(3)
6.7 Conclusion
170(3)
References
170(3)
7 Conclusion
173(4)
Aradhana Dutta
7.1 Conclusion
173(3)
7.2 Future Prospect
176(1)
Index 177
Aradhana Dutta received her Ph.D. degree in Engineering from the Tezpur University in 2015. Her research interests concentrate on Photonics and Integrated Optic Devices for sensing applications and developing technologies for biological sensing applications using lab-on-a-chip (LOC) systems based on pressure driven microfluidic platform.  Bidyut Deka is an Assistant Professor at the Girijananda Chowdhury Institute of Management and Technology in India. His research interests include photonics and photonic integrated devices for different applications and fabrication of planar waveguide-based devices Professor Sau is a Fellow of the Optical Society of India (OSI), a Life Member of the Indian Society for Technical Education, a Fellow of the Optical Society of America (OSA) and member of IEEE Communication Society. He has previously published a book with McGraw Hill on "Contemporary Optics and Optoelectronics". His research interests are on Integrated Optic Devices, Spread Spectrum Technology for Wireless Communication, Neuro-Engineering and Ocean engineering.