Muutke küpsiste eelistusi

E-raamat: Plastics Process Analysis, Instrumentation, and Control

Edited by (University of Leoben, Austria)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 09-Mar-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119795797
  • Formaat - PDF+DRM
  • Hind: 225,94 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 09-Mar-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119795797

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book focuses on plastics process analysis, instrumentation for modern manufacturing in the plastics industry. Process analysis is the starting point since plastics processing is different from processing of metals, ceramics, and other materials. Plastics materials show unique behavior in terms of heat transfer, fluid flow, viscoelastic behavior, and a dependence of the previous time, temperature and shear history which determines how the material responds during processing and its end use. Many of the manufacturing processes are continuous or cyclical in nature. The systems are flow systems in which the process variables, such as time, temperature, position, melt and hydraulic pressure, must be controlled to achieve a satisfactory product which is typically specified by critical dimensions and physical properties which vary with the processing conditions. Instrumentation has to be selected so that it survives the harsh manufacturing environment of high pressures, temperatures and shear rates, and yet it has to have a fast response to measure the process dynamics. At many times the measurements have to be in a non-contact mode so as not to disturb the melt or the finished product. Plastics resins are reactive systems. The resins will degrade if the process conditions are not controlled. Analysis of the process allows one to strategize how to minimize degradation and optimize end-use properties."--

This book focuses on plastics process analysis, instrumentation for modern manufacturing in the plastics industry.

Process analysis is the starting point since plastics processing is different from processing of metals, ceramics, and other materials. Plastics materials show unique behavior in terms of heat transfer, fluid flow, viscoelastic behavior, and a dependence of the previous time, temperature and shear history which determines how the material responds during processing and its end use. Many of the manufacturing processes are continuous or cyclical in nature. The systems are flow systems in which the process variables, such as time, temperature, position, melt and hydraulic pressure, must be controlled to achieve a satisfactory product which is typically specified by critical dimensions and physical properties which vary with the processing conditions. 

Instrumentation has to be selected so that it survives the harsh manufacturing environment of high pressures, temperatures and shear rates, and yet it has to have a fast response to measure the process dynamics. At many times the measurements have to be in a non-contact mode so as not to disturb the melt or the finished product. Plastics resins are reactive systems. The resins will degrade if the process conditions are not controlled. Analysis of the process allows one to strategize how to minimize degradation and optimize end-use properties.

Preface 1(1)
1 General Aspects
1(64)
1.1 Subjects of the Book
1(1)
1.2 Special Issues
2(1)
1.3 Injection Molding
3(3)
1.3.1 Cost Estimation in Injection Molding
3(1)
1.3.2 Cost Prediction Models
4(2)
1.4 Miniature Molding Processes
6(1)
1.5 Computer Determination of Weld Lines in Injection Molding
6(2)
1.6 Extrusion Blow Molding
8(14)
1.6.1 Rapid Thermal Cycling Molding
8(1)
1.6.2 Rapid Heat Cycle Molding
8(8)
1.6.3 Injection Molding: Heating
16(6)
1.7 Microcellular Injection Molding
22(1)
1.8 Mold Cooling
23(4)
1.9 Microcellular Foam Processing System
27(5)
1.9.1 Gas-Assisted Injection Molding
27(5)
1.9.2 Water-Assisted Injection Molding
32(1)
1.10 Molding Machine for Granules
32(1)
1.11 Foam Curing of Footwear
33(2)
1.12 Injection Compression Molding
35(1)
1.13 Hot Press System
35(3)
1.14 Stamper Mold
38(4)
1.14.1 Recoding Media
38(1)
1.14.2 Microscopic Structured Body
39(3)
1.15 Plastic Waste
42(23)
1.15.1 Marine Pollution
43(2)
1.15.2 Human Health Effects
45(1)
1.15.3 Recycling
45(12)
References
57(8)
2 Process Analysis
65(34)
2.1 Concepts and Strategies
66(2)
2.1.1 Chemometrics
67(1)
2.1.2 Safety Risks
68(1)
2.1.3 Feedback Procedures
68(1)
2.2 Linear Systems
68(23)
2.2.1 Simple First-Order Systems
68(1)
2.2.2 Fractional Order Systems
69(1)
2.2.3 Nonlinear Systems and Linearization
69(6)
2.2.4 Characteristics of Systems
75(9)
2.2.5 Controllers and Controller Settings
84(7)
2.3 Twin-Screw Extrusion
91(8)
References
92(7)
3 Examples of Process Analysis
99(102)
3.1 Greenhouse Gas Balance
99(2)
3.1.1 Poly(ethylene furandicarboxylate)
99(1)
3.1.2 Polyester Binder
100(1)
3.2 Injection Molding Technology
101(45)
3.2.1 Module for CAD Modeling of the Part
103(1)
3.2.2 Module for Numerical Simulation of Injection Molding Process
104(1)
3.2.3 Module for Calculation of Parameters of Injection Molding and Mold Design Calculation and Selection
105(1)
3.2.4 Module for Mold Modeling
106(1)
3.2.5 Examples of Testing
107(1)
3.2.6 Molding Air Cooling
108(1)
3.2.7 Cavity Pressure
109(1)
3.2.8 Plastics Extruder Dynamics
110(1)
3.2.9 History of Mathematical Modeling
110(2)
3.2.10 Current Physical Components Concept
112(1)
3.2.11 Process Stages
112(4)
3.2.12 Data Envelopment Analysis
116(2)
3.2.13 Taguchi Method
118(1)
3.2.14 Tait Model
119(2)
3.2.15 Phan-Thien-Tanner Model
121(1)
3.2.16 Product Quality Prognosis
121(1)
3.2.17 Production Predictive Control
122(1)
3.2.18 Parameter Optimization for Energy Saving
123(1)
3.2.19 Multilayer Control System
124(1)
3.2.20 Smoothed Particle Hydrodynamics Method
125(1)
3.2.21 Temperature-Dependent Adaptive Control
126(2)
3.2.22 Micro-Injection Molding
128(3)
3.2.23 Immiscible Polymer Blends
131(2)
3.2.24 Resin Injection Molding
133(4)
3.2.25 Foam Injection Molding
137(1)
3.2.26 Self-Optimizing Injection Molding Process
138(2)
3.2.27 Machine Setup
140(6)
3.3 Shrinkage in Injection Molding
146(20)
3.3.1 Factors that Affect the Shrinkage
146(1)
3.3.2 Effect of a Cooling System
147(1)
3.3.3 Influence of Molding Conditions on the Shrinkage and Roundness
148(1)
3.3.4 Shear Viscosity
148(1)
3.3.5 In-Situ Shrinkage Sensor
149(2)
3.3.6 Semicrystalline Polymer
151(1)
3.3.7 Thermoplastic Elastomers
151(2)
3.3.8 Reprocessing of ABS
153(2)
3.3.9 Sequential Simplex Algorithm with Automotive Ventiduct Grid
155(1)
3.3.10 Taguchi, ANOVA, CAE, and Neural Network Methods
156(10)
3.4 Recycling by Extrusion
166(5)
3.4.1 Multiple In-Line Extruders
166(1)
3.4.2 Mixed Post-Consumer Plastic Waste
167(1)
3.4.3 Poly(methyl methacrylate)
168(1)
3.4.4 Polyethylene terephthalate)
169(1)
3.4.5 Poly(lactic acid)
169(1)
3.4.6 Expanded Poly(styrene)
169(2)
3.5 Batch Washing of Recycled Films
171(5)
3.5.1 Recycling of Poly(styrene) Waste
171(1)
3.5.2 Textile Finishing
172(1)
3.5.3 Removing Scrap from Containers
173(2)
3.5.4 Adsorption Isotherms and Desorption Rates
175(1)
3.6 Self-Purging Microwave Pyrolysis
176(1)
3.7 Purging and Plasticization in Injection Molding
177(2)
3.7.1 Automatic Purging
177(2)
3.8 Hot Runner Systems
179(6)
3.8.1 Hot Runner Mold with Runner Pipe
180(3)
3.8.2 Hot Runner System in Plastics Molding Tools
183(1)
3.8.3 Manufacturing and Assembling of Hot Runner Systems
184(1)
3.9 Blown Film Extrusion and Thickness Control
185(1)
3.10 Residence Time Distribution for Biomass Pyrolysis
186(1)
3.11 Reactive Extrusion
187(14)
References
187(14)
4 Process Instrumentation
201(44)
4.1 In-Mold Measurement
201(1)
4.2 Temperature
202(13)
4.2.1 Soft Actuator
202(1)
4.2.2 Thermocouples
202(4)
4.2.3 Resistance Temperature Detectors
206(8)
4.2.4 Thin Film Miniature Temperature Sensors
214(1)
4.2.5 Neural Networks
214(1)
4.3 Position Transducers
215(7)
4.3.1 Rotary Position Transducer
215(1)
4.3.2 Linear Variable Differential Transformers
216(2)
4.3.3 Optical Encoders
218(1)
4.3.4 Thickness Gauges
218(4)
4.4 Composition of Matter
222(9)
4.4.1 IR Interferometer for Multilayer Film
222(3)
4.4.2 X-Ray Diffraction
225(1)
4.4.3 Ion Mobility-Mass Spectrometry
226(1)
4.4.4 Test for Ice Adhesion Strength
226(2)
4.4.5 Piezoelectric Coaxial Filament Sensors
228(1)
4.4.6 Instrumentation for Impact Testing
228(1)
4.4.7 Treatment of Titanium Surfaces
229(1)
4.4.8 Spatial Differentiation of Sub-Micrometer Domains
230(1)
4.5 Medical Issues
231(14)
4.5.1 Endoscopic Plastic Surgical Procedures
231(1)
4.5.2 Medical Catheters
231(6)
4.5.3 Multichannel Plastic Joint
237(1)
4.5.4 Transluminal Endoscopic Surgery
238(1)
4.5.5 Wire-Actuated Universal-Joint Wrists
238(1)
4.5.6 Musculoskeletal Disorders
239(1)
References
240(5)
5 Actuators and Final Control Elements
245(16)
5.1 Servo Valves
245(3)
5.1.1 Nozzle Assembly for a Servo Valve
245(3)
5.2 Servo Motors
248(3)
5.2.1 Hydraulic System
248(1)
5.2.2 Functionally Graded Materials
248(3)
5.3 Solenoid Valves
251(2)
5.3.1 Design Verification Methodology
251(1)
5.3.2 Small Solenoid Valve
252(1)
5.3.3 High-Speed Solenoid Valve
252(1)
5.3.4 Numerical Simulation
252(1)
5.4 Heaters
253(3)
5.4.1 Conduction Heaters
253(2)
5.4.2 Radiant Heaters
255(1)
5.4.3 Heater Controls
255(1)
5.5 Drive Motors and Motor Speed Control for Extrusion
256(5)
5.5.1 Single-Drive Motor
256(1)
5.5.2 Linear Induction Motor
256(1)
5.5.3 Motor Power Consumption in Single-Screw Extrusion
257(1)
5.5.4 Dual Motor Multi-Head 3D Printer
258(1)
References
258(3)
6 Analysis of Melt Processing Systems
261(102)
6.1 Process Parameter Determination of Plastic Injection Molding
261(6)
6.1.1 Case-Based Reasoning Method
261(3)
6.1.2 Knowledge-Based Reasoning Method
264(1)
6.1.3 Rule-Based Reasoning Method
265(1)
6.1.4 Fuzzy Reasoning Method
266(1)
6.2 Process Parameter Determination of Plastic Injection Molding of LCDs
267(1)
6.3 Processing History
267(9)
6.3.1 Flow Defects
267(2)
6.3.2 Biocomposites
269(2)
6.3.3 3D Printing
271(1)
6.3.4 Semiconducting Polymer Blends
272(1)
6.3.5 Van Gurp-Palmen Plot
272(1)
6.3.6 Nanocrystal Composites
273(1)
6.3.7 Melt-Mastication
274(1)
6.3.8 Crystal Nucleation in Nanocomposites
275(1)
6.4 Shear History
276(2)
6.5 Extrusion Product Control
278(28)
6.5.1 Branched Structures
278(1)
6.5.2 Big Area Additive Manufacturing
279(1)
6.5.3 Single-Screw Extrusion Control
280(4)
6.5.4 Blown Film
284(1)
6.5.5 Chill Roll Cast Film
285(7)
6.5.6 Sheet
292(2)
6.5.7 Profiles
294(3)
6.5.8 Pipe and Tubing
297(6)
6.5.9 Automatic Screen Changers
303(3)
6.6 Extrusion Blow Molding Parison Control
306(4)
6.7 Injection Molding
310(19)
6.7.1 Ram Velocity Control
310(3)
6.7.2 Pressure Control
313(6)
6.7.3 Gas-Assisted Control
319(3)
6.7.4 System Diagnostics
322(6)
6.7.5 Statistical Process and Quality Control
328(1)
6.8 Thermoforming
329(3)
6.8.1 Twin Sheet Thermoforming
329(1)
6.8.2 Rotary Thermoforming
330(1)
6.8.3 Process Model for Thermoforming
331(1)
6.9 Rotomolding
332(16)
6.9.1 Polymer Compositions for Rotomolding
334(14)
6.10 Compounders
348(15)
6.10.1 History of Compounding
348(1)
6.10.2 Types of Compounders
348(2)
6.10.3 Special Applications
350(2)
References
352(11)
7 Auxiliary Equipment
363(26)
7.1 Crammer Feeder
363(1)
7.1.1 Crammer Feeder for Extruder
363(1)
7.1.2 Devulcanization of Scrap Rubber
363(1)
7.2 Dryers
364(15)
7.2.1 Drying Temperatures
364(2)
7.2.2 Moisture Content
366(1)
7.2.3 Resin Dryers
366(3)
7.2.4 Pellet Dryers
369(10)
7.3 Pullers
379(5)
7.3.1 Pullers in Extrusion
379(2)
7.3.2 Pullers in Injection Molding
381(3)
7.4 Chillers
384(1)
7.5 Robots
385(4)
References
387(2)
Index 389(1)
Acronyms 389(5)
Chemicals 394(5)
General Index 399
Johannes Karl Fink is Professor of Macromolecular Chemistry at Montanuniversität Leoben, Austria. His industry and academic career spans more than 30 years in the fields of polymers, and his research interests include characterization, flame retardancy, thermodynamics and the degradation of polymers, pyrolysis, and adhesives. Professor Fink has published 20 books on physical chemistry and polymer science with the Wiley-Scrivener imprint, including A Concise Introduction to Additives for Thermoplastic Polymers, The Chemistry of Biobased Polymers, 2nd edition, 3D Industrial Printing with Polymers, The Chemistry of Environmental Engineering and Flame Retardants.