Muutke küpsiste eelistusi

E-raamat: Plastics Technology Handbook

(Indian Institute of Science, Bangalore, India)
  • Formaat: 1044 pages
  • Sari: Plastics Engineering
  • Ilmumisaeg: 07-Nov-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351651929
  • Formaat - EPUB+DRM
  • Hind: 422,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 1044 pages
  • Sari: Plastics Engineering
  • Ilmumisaeg: 07-Nov-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351651929

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Updated throughout to reflect advances over the last decade, the Fifth Edition continues the handbook’s tradition of authoritative coverage of fundamentals, production methods, properties, and applications of plastics and polymer-based materials. It covers tooling for plastics fabrication processes, thermoplastics, thermosetting plastics, foamed plastics, reinforced plastics, plastisols, and new developments in mold design. It also discusses rubber compounding and processing technologies. More recent developments in polymer fabrication and processing, including electrospinning, electrografted coating, polymer-metal hybrid joining, flex printing, and rapid prototyping/ 3D printing, are also presented. The handbook highlights advanced materials including natural and synthetic nanosize polymers, their unusual properties, and innovative applications, as well as polymer-carbon nanocomposites, graphene-based polymer nanocomposites, smart healable polymer composites, smart polymer coatings, electroactive polymers, polymer nanomaterials, and novel nano-/microfibrillar polymer composites. It offers updates on polymer solar battery development, plastics recycling and disposal methods, new concepts of "upcycling" and single-polymer composites, renewable synthetic polymers, biodegradable plastics and composites, and toxicity of plastics. The book also provides an overview of new developments in polymer applications in various fields including packaging, building and construction, corrosion prevention and control, automotive, aerospace applications, electrical and electronic applications, agriculture and horticulture, domestic appliances and business machines, medical and biomedical applications, marine and offshore applications, and sports.

Arvustused

"The comprehensive coverage of polymer engineering topics makes this text an important go-to source, especially for specialty topics. The text is well organized with extensive references that provide a ready entre into details associated with all topics." Kenneth J. Wynne, Virginia Commonwealth University, USA

"The Plastics Technology Handbook represents the Polymer Bible where you can find the primary information about everything related to polymers. The coverage of the area is unique! If you have any question about polymers please open first this book and thereafter only you can look for a more detailed information in the specific literature. It is hardly possible to formulate a question regarding polymers and not to find its answer in this remarkable Handbook." Stoyko Fakirov, University of Auckland, New Zealand

Preface xxvii
Author xxxi
1 Characteristics of Polymers and Polymerization Processes
1.1 What Is a Polymer?
1(2)
1.2 Molecular Weight of Polymers
3(17)
1.2.1 Number-Average Molecular Weight (Mr,)
3(4)
1.2.1.1 End-Group Analysis
3(1)
1.2.1.2 Ebulliometry (Boiling-Point Elevation)
4(1)
1.2.1.3 Cryoscopy (Freezing-Point Depression)
4(1)
1.2.1.4 Membrane Osmometry
4(1)
1.2.1.5 Vapor-Phase Osmometry
5(2)
1.2.2 Weight-Average Molecular Weight (Mw)
7(2)
1.2.2.1 Light-Scattering Method
7(2)
1.2.2.2 Low-Angle Laser Light Scattering (LALLS)
9(1)
1.2.3 Viscosity-Average Molecular Weight (Mv)
9(3)
1.2.3.1 Dilute Solution Viscometry
10(2)
1.2.4 Polydispersity Index
12(8)
1.2.4.1 Gel Permeation Chromatography
14(6)
1.3 Polymerization Reactions
20(17)
1.3.1 Addition or Chain Polymerization
20(4)
1.3.2 Coordination Addition Polymerization
24(4)
1.3.3 Step Polymerization
28(6)
1.3.4 Supramolecular Polymerization
34(1)
1.3.5 Copolymerization
35(2)
1.4 Polymerization Processes
37(21)
1.4.1 Process Characteristics
37(12)
1.4.1.1 Bulk, Solution, and Suspension Polymerization
38(1)
1.4.1.2 Emulsion Polymerization
39(4)
1.4.1.3 Microemulsion Polymerization
43(6)
1.4.2 Industrial Polymerization
49(11)
1.4.2.1 Heat Removal
49(1)
1.4.2.2 Reactor Agitation
50(1)
1.4.2.3 Residence Time
50(1)
1.4.2.4 Industrial Reactors
51(7)
1.5 Configurations of Polymer Molecules
58(1)
1.6 Conformations of a Polymer Molecule
58(2)
1.7 Polymer Crystallinity
60(2)
1.7.1 Determinants of Polymer Crystallinity
60(2)
1.8 The Amorphous State
62(1)
1.9 Structural Shape of Polymer Molecules
63(2)
1.10 Thermal Transitions in Polymers
65(9)
1.10.1 Tg and Tm
65(3)
1.10.2 Regions of Viscoelastic Behavior
68(2)
1.10.3 Factors Affecting Tg
70(1)
1.10.3.1 Chain Flexibility
70(1)
1.10.3.2 Steric Effects
71(1)
1.10.3.3 Configurational Effects
71(1)
1.10.3.4 Effect of Cross-Linking
71(1)
1.10.4 Factors Affecting Tm
71(3)
1.10.4.1 Symmetry
72(1)
1.10.4.2 Intermolecular Bonding
72(1)
1.10.4.3 Tacticity
73(1)
1.10.4.4 Branching, Chain Flexibility, and Molecular Weight
74(1)
1.10.5 Relation between Tm and Tg
74(1)
1.11 Designing a Polymer Structure for Improved Properties
74(2)
1.12 Cross-Linking of Polymer Chains
76(10)
1.12.1 Reactions of Functional Groups
76(2)
1.12.2 Vulcanization
78(5)
1.12.3 Radiation Cross-Linking
83(1)
1.12.4 Photochemical Cross-Linking
84(1)
1.12.5 Ionic Cross-Linking
85(1)
1.13 Solubility Behavior of Polymers
86(8)
1.13.1 Solubility Parameter
86(8)
1.14 Effects of Corrosives on Polymers
94(1)
1.15 Thermal Stability and Flame Retardation
94(9)
1.15.1 Thermal Degradation
98(4)
1.15.2 Ablation
102(1)
1.15.3 Flame Retardation
103(1)
1.16 Deterioration of Polymers
103(4)
1.16.1 Chemical Deterioration
104(2)
1.16.2 Degradation by Radiation
106(1)
1.16.3 Microbiological Deterioration
106(1)
1.17 Stabilization of Polymers
107(12)
1.17.1 Antioxidants and Related Compounds
109(1)
1.17.2 Chemical Structures of Antioxidants
110(1)
1.17.3 Stabilization of Selected Polymers
110(10)
1.17.3.1 Polypropylene
112(2)
1.17.3.2 Polyethylene
114(1)
1.17.3.3 Polystyrene
115(1)
1.17.3.4 Acrylonitrile-Butadiene-Styrene Copolymers
115(1)
1.17.3.5 Polycarbonate
115(1)
1.17.3.6 Nylons
116(1)
1.17.3.7 Thermoplastic Elastomers
116(1)
1.17.3.8 Polyacetal
117(1)
1.17.3.9 Poly(Vinyl Chloride)
117(1)
1.17.3.10 Rubber
118(1)
1.18 Metal Deactivators
119(1)
1.19 Light Stabilizers
120(8)
1.19.1 Light Stabilizer Classes
121(7)
1.19.1.1 UV Absorbers
122(1)
1.19.1.2 Quenchers
123(1)
1.19.1.3 Hydroperoxide Decomposers
124(1)
1.19.1.4 Free-Radical Scavengers
124(4)
1.20 Light Stabilizers for Selected Plastics
128(3)
1.20.1 Polypropylene
128(1)
1.20.2 Polyethylene
128(1)
1.20.3 Styrenic Polymers
129(1)
1.20.4 Poly(Vinyl Chloride)
130(1)
1.20.5 Polycarbonate
130(1)
1.20.6 Polyacrylates
131(1)
1.20.7 Polyacetal
131(1)
1.20.8 Polyurethanes
131(1)
1.20.9 Polyamides
131(1)
1.21 Diffusion and Permeability
131(2)
1.21.1 Diffusion
132(1)
1.21.2 Permeability
132(1)
1.22 Polymer Compounding
133(4)
1.22.1 Fillers
135(2)
1.23 Plasticizers
137(5)
1.23.1 Phthalic Acid Esters
139(1)
1.23.2 Phosphoric Acid Esters
140(1)
1.23.3 Fatty Acid Esters
140(1)
1.23.4 Polymeric Plasticizers
141(1)
1.23.5 Miscellaneous Plasticizers
142(1)
1.24 Antistatic Agents
142(5)
1.24.1 External Antistatic Agents
143(1)
1.24.2 Internal Antistatic Agents
144(1)
1.24.3 Chemical Composition of Antistatic Agents
144(3)
1.24.3.1 Antistatic Agents Containing Nitrogen
144(2)
1.24.3.2 Antistatic Agents Containing Phosphorus
146(1)
1.24.3.3 Antistatic Agents Containing Sulfur
146(1)
1.24.3.4 Betaine-Type Antistatic Agents
147(1)
1.24.3.5 Nonionic Antistatic Agents
147(1)
1.25 Flame Retardants
147(4)
1.25.1 Halogen Compounds
148(1)
1.25.2 Phosphorus Compounds
149(1)
1.25.3 Halogen-Antimony Synergetic Mixtures
149(1)
1.25.4 Intumescent Flame Retardants
150(1)
1.26 Smoke Suppressants
151(1)
1.27 Colorants
151(1)
1.28 Antimicrobials
152(1)
1.29 Toxicity of Plastics
152(5)
1.29.1 Plastic Devices in Pharmacy and Medicine
153(2)
1.29.1.1 Packing
153(1)
1.29.1.2 Tubings and Blood Bag Assemblies
153(1)
1.29.1.3 Implants
154(1)
1.29.1.4 Adhesives
154(1)
1.29.1.5 Dental Materials
154(1)
1.29.1.6 Nanomedicines and Drug Delivery
155(1)
1.29.2 Biodegradable Plastics and Bioplastics
155(1)
1.29.3 Oxo-Biodegradable Plastics
156(1)
1.29.4 Toxicity of Plastic Combustion Products
157(1)
1.29.5 Toxicity Testing
157(1)
References
157(4)
2 Fabrication Processes
2.1 Types of Processes
161(1)
2.2 Tooling for Plastics Processing
161(3)
2.2.1 Types of Molds
162(1)
2.2.2 Types of Dies
162(1)
2.2.3 Tool Design
163(1)
2.3 Compression Molding
164(2)
2.3.1 Open Flash
165(1)
2.3.2 Fully Positive
165(1)
2.3.3 Semipositive
165(1)
2.3.4 Process Applicability
165(1)
2.4 Transfer Molding
166(4)
2.4.1 Ejection of Molding
168(1)
2.4.2 Heating System
168(1)
2.4.3 Types of Presses
169(1)
2.4.4 Preheating
169(1)
2.4.5 Preforming
170(1)
2.4.6 Flash Removal
170(1)
2.5 Injection Molding of Thermoplastics
170(12)
2.5.1 Types of Injection Units
171(1)
2.5.2 Clamping Units
172(1)
2.5.3 Molds
173(7)
2.5.3.1 Mold Designs
173(2)
2.5.3.2 Number of Mold Cavities
175(1)
2.5.3.3 Runners
175(1)
2.5.3.4 Gating
176(2)
2.5.3.5 Valve Gates
178(1)
2.5.3.6 Venting
179(1)
2.5.3.7 Parting Line
179(1)
2.5.3.8 Cooling
179(1)
2.5.3.9 Ejection
180(1)
2.5.3.10 Standard Mold Bases
180(1)
2.5.4 Structural Foam Injection Molding
180(1)
2.5.5 Co-Injection (Sandwich) Molding
180(1)
2.5.6 Gas-Assisted Injection Molding
181(1)
2.6 Injection Molding of Thermosetting Resins
182(3)
2.6.1 Screw-Injection Molding of Thermosetting Resins
182(3)
2.7 Extrusion
185(11)
2.7.1 Extruder Capacity
186(1)
2.7.2 Extruder Design and Operation
186(3)
2.7.2.1 Typical Screw Construction
186(1)
2.7.2.2 Screw Zones
187(1)
2.7.2.3 Motor Drive
187(1)
2.7.2.4 Heating
187(1)
2.7.2.5 Screw Design
188(1)
2.7.3 Multiple-Screw Extruders
189(1)
2.7.4 Blown-Film Extrusion
190(2)
2.7.5 Flat Film or Sheet Extrusion
192(2)
2.7.6 Pipe or Tube Extrusion
194(1)
2.7.7 Wire and Cable Coverings
195(1)
2.7.8 Extrusion Coating
195(1)
2.7.9 Profile Extrusion
196(1)
2.8 Blow Molding
196(3)
2.8.1 Extrusion Blow Molding
197(1)
2.8.2 Injection Blow Molding
198(1)
2.8.3 Blow Molds
198(1)
2.9 Calendering
199(1)
2.10 Spinning of Fibers
200(4)
2.10.1 Melt Spinning
202(1)
2.10.2 Dry Spinning
202(1)
2.10.3 Wet Spinning
202(2)
2.10.4 Cold Drawing of Fibers
204(1)
2.11 Electrospinning of Polymer Nanofibers
204(4)
2.12 Thermoforming
208(2)
2.12.1 Vacuum Forming
208(1)
2.12.2 Pressure Forming
209(1)
2.12.3 Mechanical Forming
210(1)
2.13 Casting Processes
210(3)
2.13.1 Simple Casting
210(1)
2.13.2 Plastisol Casting
210(3)
2.13.2.1 Dip Casting
212(1)
2.13.2.2 Slush Casting
212(1)
2.13.2.3 Rotational Casting
213(1)
2.14 Reinforcing Processes
213(24)
2.14.1 Molding Methods
214(9)
2.14.1.1 Hand Lay-Up or Contact Molding
214(1)
2.14.1.2 Spray-Up
215(1)
2.14.1.3 Matched Metal Molding
215(1)
2.14.1.4 Vacuum-Bag Molding
216(1)
2.14.1.5 Pressure-Bag Molding
216(1)
2.14.1.6 Filament Winding
217(1)
2.14.1.7 Pultrusion
218(2)
2.14.1.8 Prepreg Molding
220(3)
2.14.2 Fibrous Reinforcements
223(14)
2.14.2.1 Glass Fibers
223(1)
2.14.2.2 Graphite/Carbon Fibers, the Beginning
224(1)
2.14.2.3 Manufacture of Graphite (Carbon) Fibers
225(2)
2.14.2.4 Graphite/Carbon Fibers and Fabrics
227(2)
2.14.2.5 Graphite/Carbon Fiber-Reinforced Plastics
229(1)
2.14.2.6 Manufacture of CFRP Parts
230(1)
2.14.2.7 Applications of CFRP Products
231(3)
2.14.2.8 Aramid Fibers
234(1)
2.14.2.9 Applications
235(1)
2.14.2.10 Extended-Chain Polyethylene Fibers
235(2)
2.15 Reaction Injection Molding
237(3)
2.15.1 Machinery
238(1)
2.15.2 Polyurethanes
239(1)
2.15.3 Nylons
239(1)
2.16 Structural Reaction Injection Molding
240(1)
2.16.1 Applications
241(1)
2.17 Resin Transfer Molding
241(1)
2.18 Foaming Processes
242(21)
2.18.1 Rigid Foam Blowing Agents
244(1)
2.18.2 Polystyrene Foams
244(2)
2.18.2.1 Extruded Polystyrene Foam
244(1)
2.18.2.2 Expandable Polystyrene
245(1)
2.18.2.3 Structural Foams
246(1)
2.18.3 Polyolefin Foams
246(5)
2.18.4 Polyurethane Foams
251(4)
2.18.4.1 Flexible Polyurethane Foams
251(3)
2.18.4.2 Rigid and Semirigid Foams
254(1)
2.18.5 Foamed Rubber
255(1)
2.18.6 Epoxy Resins
255(1)
2.18.7 Urea-Formaldehyde Foams
256(1)
2.18.8 Silicone Foams
257(1)
2.18.9 Phenolic Foams
258(1)
2.18.10 Poly(Vinyl Chloride) Foams
258(3)
2.18.11 Special Foams
261(2)
2.19 Rapid Prototyping/3D Printing
263(2)
2.20 Rubber Compounding and Processing Technology
265(13)
2.20.1 Compounding Ingredients
265(5)
2.20.1.1 Processing Aids
268(1)
2.20.1.2 Fillers
269(1)
2.20.2 Mastication and Mixing
270(2)
2.20.2.1 Open Mill
270(1)
2.20.2.2 Internal Batch Mixers
271(1)
2.20.3 Reclaimed Rubber
272(2)
2.20.4 Some Major Rubber Products
274(4)
2.20.4.1 Tires
274(2)
2.20.4.2 Belting and Hoses
276(2)
2.20.4.3 Cellular Rubber Products
278(1)
2.21 Miscellaneous Processing Techniques
278(21)
2.21.1 Coating Processes
278(9)
2.21.1.1 Fluidized Bed Coating
279(1)
2.21.1.2 Spray Coating
280(1)
2.21.1.3 Electrostatic Spraying
280(1)
2.21.1.4 Smart Coatings
281(4)
2.21.1.5 Electrografted Coatings
285(2)
2.21.2 Powder Molding of Thermoplastics
287(1)
2.21.2.1 Static (Sinter) Molding
287(1)
2.21.2.2 Rotational Molding
287(1)
2.21.2.3 Centrifugal Casting
288(1)
2.21.3 Adhesive Bonding of Plastics
288(6)
2.21.3.1 Solvent Cementing
289(1)
2.21.3.2 Adhesive Bonding
289(3)
2.21.3.3 Joining of Specific Plastics
292(2)
2.21.4 Welding
294(2)
2.21.4.1 Hot-Gas Welding
295(1)
2.21.4.2 Fusion Welding
295(1)
2.21.4.3 Friction Welding
295(1)
2.21.4.4 High-Frequency Welding
295(1)
2.21.4.5 Ultrasonic Welding
296(1)
2.21.5 Joining Polymer-Metal Hybrids
296(3)
2.22 Decoration of Plastics
299(5)
2.22.1 Painting
299(1)
2.22.2 Printing
300(1)
2.22.2.1 Gravure Printing
300(1)
2.22.2.2 Flexography
300(1)
2.22.2.3 Screen Process Printing
300(1)
2.22.2.4 Pad Printing
301(1)
2.22.2.5 Flex Printing
301(1)
2.22.3 Hot Stamping
301(1)
2.22.4 In-Mold Decorating
302(1)
2.22.5 Embossing
302(1)
2.22.6 Electroplating
303(1)
2.22.7 Vacuum Metallizing
303(1)
References
304(3)
3 Plastics Properties and Testing
3.1 Introduction
307(1)
3.2 Mechanical Properties
307(1)
3.2.1 Stress and Strain
308(2)
3.2.2 Stress-Strain Behavior
310(3)
3.2.3 Viscoelastic Behavior of Plastics
313(1)
3.2.3.1 Modulus and Compliance
313(1)
3.2.4 Stress-Strain-Time Behavior
314(3)
3.2.4.1 The WLF Equations
316(1)
3.2.5 Creep Behavior
317(1)
3.2.6 Maxwell Model
318(4)
3.2.6.1 Stress-Strain Relation
318(2)
3.2.6.2 Generalized Maxwell Model
320(2)
3.2.7 Kelvin or Voigt Model
322(2)
3.2.7.1 Stress-Strain Relation
322(2)
3.2.8 Four-Element Model
324(1)
3.2.9 Zener Model
325(1)
3.2.10 Superposition Principle
326(1)
3.2.11 Isometric and Isochronous Curves
327(1)
3.2.12 Pseudoelastic Design Method
328(2)
3.2.13 Effect of Temperature
330(1)
3.2.14 Time-Temperature Superposition
331(2)
3.2.15 Dynamic Mechanical Properties
333(1)
3.2.16 Rheological Behavior
334(7)
3.2.16.1 Classification of Fluid Behavior
335(3)
3.2.16.2 Effect of Shear Rate on Viscosity
338(1)
3.2.16.3 Effect of Molecular Weight on Viscosity
338(1)
3.2.16.4 Effect of Temperature on Polymer Viscosity
339(1)
3.2.16.5 Effect of Pressure on Viscosity
340(1)
3.2.16.6 Weissenberg Effects
340(1)
3.2.16.7 Irregular Flow or Melt Fracture
340(1)
3.2.17 Measurement of Viscosity
341(3)
3.2.17.1 Rotational Viscometers
342(1)
3.2.17.2 Capillary Rheometers
343(1)
3.2.18 Plastics Fractures
344(1)
3.2.19 Impact Behavior of Plastics
345(3)
3.2.20 Fatigue of Plastics
348(3)
3.2.21 Hardness
351(1)
3.2.22 Indentation Hardness
351(3)
3.2.22.1 Brinell Hardness Number
351(1)
3.2.22.2 Vickers Hardness Number
351(1)
3.2.22.3 Knoop Hardness Number
352(1)
3.2.22.4 Rockwell Hardness Number
352(1)
3.2.22.5 Barcol Hardness
352(1)
3.2.22.6 Durometer Hardness
353(1)
3.2.23 Rebound Hardness
354(1)
3.2.24 Scratch Hardness
355(1)
3.2.25 Stress Corrosion Cracking of Polymers
356(1)
3.3 Reinforced Plastics
356(10)
3.3.1 Types of Reinforcement
356(1)
3.3.2 Types of Matrix
357(1)
3.3.3 Analysis of Reinforced Plastics
357(7)
3.3.3.1 Continuous Fibers
357(3)
3.3.3.2 Discontinuous Fibers
360(2)
3.3.3.3 Fiber Length Less than lc
362(1)
3.3.3.4 Fiber Length Equal to lc
363(1)
3.3.3.5 Fiber Length Greater than lc
363(1)
3.3.4 Deformation Behavior of Fiber-Reinforced Plastic
364(1)
3.3.5 Fracture of Fiber-Reinforced Plastics
365(1)
3.3.5.1 Tension
365(1)
3.3.5.2 Compression
365(1)
3.3.5.3 Flexure or Shear
366(1)
3.3.6 Fatigue Behavior of Reinforced Plastics
366(1)
3.3.7 Impact Behavior of Reinforced Plastics
366(1)
3.4 Electrical Properties
366(11)
3.4.1 Dielectric Strength
367(1)
3.4.2 Insulation Resistance
368(1)
3.4.3 Arc Resistance
369(1)
3.4.4 Dielectric Constant
370(7)
3.4.4.1 Polarization and Dipole Moment
372(2)
3.4.4.2 Dielectric Constant versus Frequency
374(1)
3.4.4.3 Dielectric Constant versus Temperature
374(1)
3.4.4.4 Dielectric Losses
375(1)
3.4.4.5 Dielectric Losses of Polar Polymers
376(1)
3.5 Optical Properties
377(4)
3.5.1 Optical Clarity
377(1)
3.5.2 Index of Refraction
378(2)
3.5.3 Piped Lighting Effect
380(1)
3.5.4 Stress-Optical Characteristics
380(1)
3.6 Thermal Properties
381(3)
3.6.1 Specific Heat
381(1)
3.6.2 Thermal Expansion
382(1)
3.6.3 Thermal Conductivity
382(1)
3.6.4 Transition Temperatures and Temperature Limitations
383(1)
3.6.5 Standard Properties of Plastics
384(1)
3.7 Identification of Common Plastics
384(18)
3.7.1 Behaviors on Heating and Ignition
394(1)
3.7.2 Tests for Characteristic Elements
395(2)
3.7.3 Specific Tests
397(5)
3.8 Plastics Analysis by Instrumental Methods
402(28)
3.8.1 IR Spectroscopy
402(15)
3.8.1.1 Methods of Measurement
403(1)
3.8.1.2 Instruments
404(1)
3.8.1.3 Sample Preparation
404(2)
3.8.1.4 Fourier Transform IR Spectroscopy
406(1)
3.8.1.5 Qualitative Analysis
407(8)
3.8.1.6 Quantitative Analysis
415(2)
3.8.2 NMR Spectroscopy
417(17)
3.8.2.1 General Principles
418(3)
3.8.2.2 Chemical Shift
421(2)
3.8.2.3 Shielding Mechanisms
423(3)
3.8.2.4 Spin-Spin Coupling
426(1)
3.8.2.5 Applications in Polymer Analysis
426(4)
References
430(3)
4 Industrial Polymers
4.1 Introduction
433(1)
4.2 Part I: Addition Polymers
434(52)
4.2.1 Polyolefins
435(29)
4.2.1.1 Polyethylene
435(5)
4.2.1.2 Polypropylene
440(7)
4.2.1.3 Polyallomer
447(1)
4.2.1.4 Poly(Vinyl Chloride)
448(8)
4.2.1.5 Poly(Vinylidene Chloride)
456(1)
4.2.1.6 Polytetrafluoroethylene and Other Fluoropolymers
457(4)
4.2.1.7 Polyisobutylene
461(1)
4.2.1.8 Polystyrene
462(1)
4.2.1.9 Polybutadiene (Butadiene Rubber)
463(1)
4.2.1.10 Polyisoprene
463(1)
4.2.1.11 Polychloroprene
464(1)
4.2.2 Olefin Copolymers
464(11)
4.2.2.1 Styrene-Butadiene Rubber
464(1)
4.2.2.2 Nitrile Rubber
465(1)
4.2.2.3 Ethylene-Propylene Elastomer
465(2)
4.2.2.4 Butyl Rubber
467(1)
4.2.2.5 Thermoplastic Elastomers
467(3)
4.2.2.6 Fluoroelastomers
470(2)
4.2.2.7 Styrene-Acrylonitrile Copolymer
472(1)
4.2.2.8 Acrylonitrile-Butadiene-Styrene Terpolymer
472(2)
4.2.2.9 Ethylene-Methacrylic Acid Copolymers (Ionomers)
474(1)
4.2.3 Acrylics
475(7)
4.2.3.1 Polyacrylonitrile
475(1)
4.2.3.2 Polyacrylates
476(1)
4.2.3.3 Polymethacrylates
477(2)
4.2.3.4 Polyacrylamide
479(1)
4.2.3.5 Poly(Acrylic Acid) and Poly(Methacrylic Acid)
480(1)
4.2.3.6 Acrylic Adhesives
481(1)
4.2.4 Vinyl Polymers
482(4)
4.2.4.1 Poly(Vinyl Acetate)
482(1)
4.2.4.2 Poly(Vinyl Alcohol)
483(1)
4.2.4.3 Poly(Vinyl Acetals)
484(1)
4.2.4.4 Poly(Vinyl Cinnamate)
485(1)
4.2.4.5 Poly(Vinyl Ethers)
485(1)
4.2.4.6 Poly(Vinyl Pyrrolidone)
486(1)
4.2.4.7 Poly(Vinyl Carbazole)
486(1)
4.3 Part II: Condensation Polymers
486(104)
4.3.1 Polyesters
487(16)
4.3.1.1 Poly(Ethylene Terephthalate)
487(1)
4.3.1.2 Poly(Butylene Terephthalate)
488(2)
4.3.1.3 Poly(Dihydroxymethylcyclohexyl Terephthalate)
490(1)
4.3.1.4 Unsaturated Polyesters
491(6)
4.3.1.5 Aromatic Polyesters
497(2)
4.3.1.6 Wholly Aromatic Copolyester
499(1)
4.3.1.7 Polycarbonates
500(3)
4.3.2 Polyamides
503(16)
4.3.2.1 Aliphatic Polyamides
503(8)
4.3.2.2 Aromatic Polyamides
511(2)
4.3.2.3 Polyimides
513(6)
4.3.3 Formaldehyde Resins
519(10)
4.3.3.1 Phenol-Formaldehyde Resins
519(5)
4.3.3.2 Urea-Formaldehyde Resins
524(3)
4.3.3.3 Melamine-Formaldehyde Resins
527(2)
4.3.4 Polyurethanes
529(8)
4.3.4.1 Polyurethane Rubbers and Spandex Fibers
529(5)
4.3.4.2 Flexible Polyurethane Foam
534(1)
4.3.4.3 Rigid and Semirigid Polyurethane Foams
535(1)
4.3.4.4 Polyurethane Coatings
536(1)
4.3.5 Ether Polymers
537(22)
4.3.5.1 Polyacetal
538(2)
4.3.5.2 Poly(Ethylene Oxide)
540(1)
4.3.5.3 Applications
541(3)
4.3.5.4 Poly(Propylene Oxide)
544(1)
4.3.5.5 Epoxy Resins
545(12)
4.3.5.6 Poly(Phenylene Oxide)
557(2)
4.3.6 Cellulosic Polymers
559(4)
4.3.6.1 Regenerated Cellulose
560(1)
4.3.6.2 Cellulose Nitrate
560(1)
4.3.6.3 Cellulose Acetate
561(1)
4.3.6.4 Other Cellulose Esters
562(1)
4.3.6.5 Cellulose Ethers
562(1)
4.3.7 Sulfide Polymers
563(2)
4.3.7.1 Polysulfides
563(1)
4.3.7.2 Poly(Phenylene Sulfide)
564(1)
4.3.8 Polysulfones
565(2)
4.3.8.1 Properties
566(1)
4.3.9 Polyether Ketones
567(2)
4.3.10 Polybenzimidazole
569(1)
4.3.11 Silicones and Other Inorganic Polymers
570(7)
4.3.11.1 Silicones
570(6)
4.3.11.2 Polyphosphazenes
576(1)
4.3.11.3 Polythiazyl
577(1)
4.3.12 Polyblends
577(10)
4.3.12.1 Prediction of Polyblend Properties
581(1)
4.3.12.2 Selection of Blend Components
582(2)
4.3.12.3 Compatibilization of Polymers
584(2)
4.3.12.4 Industrial Polyblends
586(1)
4.3.12.5 Nanoblends
586(1)
4.3.13 Interpenetrating Polymer Networks
587(6)
4.3.13.1 Industrial IPNs
589(1)
References
590(3)
5 Polymers in Special Uses
5.1 Introduction
593(1)
5.2 High-Temperature and Fire-Resistant Polymers
593(4)
5.2.1 Temperature-Resistant Polymers
594(2)
5.2.2 Fire-Resistant Polymers
596(1)
5.3 Liquid Crystal Polymers
597(14)
5.3.1 Thermotropic Main-Chain Liquid Crystal Polymers
603(2)
5.3.2 Side-Chain Liquid Crystal Polymers
605(1)
5.3.3 Chiral Nematic Liquid Crystal Polymers
606(3)
5.3.4 Properties of Commercial LCPs
609(2)
5.3.5 Applications
611(1)
5.4 Conductive Polymers
611(25)
5.4.1 Filled Polymers
612(6)
5.4.1.1 EMI Shielding
614(2)
5.4.1.2 Conductive Coating
616(1)
5.4.1.3 Signature Materials
617(1)
5.4.2 Inherently Conductive Polymers
618(17)
5.4.2.1 Doping
620(5)
5.4.2.2 Conducting Mechanisms
625(2)
5.4.2.3 Applications
627(8)
5.4.3 Photoconductive Polymers
635(1)
5.5 Electroactive Polymers
636(8)
5.5.1 Ionic EAPs
636(4)
5.5.1.1 Polymer-Metal Composites
636(1)
5.5.1.2 Ionic Polymer Gels
637(1)
5.5.1.3 Carbon Nanotubes
637(2)
5.5.1.4 Conductive Polymers
639(1)
5.5.2 Electronic EAPs
640(10)
5.5.2.1 Ferroelectric Polymers
640(1)
5.5.2.2 Polymer Electrets
640(1)
5.5.2.3 Electrostrictive Polymers
641(1)
5.5.2.4 Dielectric Elastomers
642(2)
5.6 Polymers in Fiber Optics
644(4)
5.7 Polymers in Nonlinear Optics
648(1)
5.8 Langmuir-Blodgett Films
648(2)
5.9 Piezo-and Pyroelectric Polymers
650(3)
5.9.1 Applications
651(2)
5.10 Polymeric Electrolytes
653(3)
5.11 Polymers in Photoresist Applications
656(13)
5.11.1 Negative Photoresists
659(2)
5.11.2 Positive Photoresists
661(6)
5.11.2.1 Near-UV Application
661(2)
5.11.2.2 Mid-and Deep-UV Photoresists
663(4)
5.11.3 Electron Beam Resists
667(1)
5.11.4 Plasma-Developable Photoresists
667(2)
5.12 Photoresist Applications for Printing
669(3)
5.12.1 Printing Plates
669(2)
5.12.1.1 Relief or Raised-Image Plates
669(1)
5.12.1.2 Photolithography/Planographic Plates
670(1)
5.12.1.3 Photogravure
670(1)
5.12.2 Photoengraving
671(1)
5.12.3 Printed Circuits
671(1)
5.12.4 Collotype and Proofing Systems
671(1)
5.13 Optical Information Storage
672(1)
5.14 Polymers in Adhesives
673(5)
5.14.1 Solvent-Based Adhesives
674(1)
5.14.2 Water-Based Adhesives
675(1)
5.14.3 Hot Melt Adhesives
676(1)
5.14.4 Radiation-Curable Adhesives
677(1)
5.15 Degradable Polymers
678(7)
5.15.1 Packaging Applications
679(1)
5.15.2 Medical and Related Applications
680(5)
5.15.2.1 Synthetic Polymers
680(2)
5.15.2.2 Controlled Release Agents
682(1)
5.15.2.3 Tissue Engineering
683(2)
5.16 Ionic Polymers
685(22)
5.16.1 Physical Properties and Applications
686(5)
5.16.1.1 Ionic Cross-Linking
686(1)
5.16.1.2 Ion-Exchange
687(2)
5.16.1.3 Hydrophilicity
689(2)
5.16.2 Ionomers
691(6)
5.16.2.1 Polyethylene Ionomers
691(3)
5.16.2.2 Elastomeric Ionomers
694(1)
5.16.2.3 Ionomers Based on Polytetrafluoroethylene
695(1)
5.16.2.4 Ionomers Based on Polysulfones
696(1)
5.16.3 Polyelectrolytes
697(10)
5.16.3.1 Ion-Exchangers
697(8)
5.16.3.2 Polycarboxylates
705(1)
5.16.3.3 Integral Polyelectrolytes
706(1)
5.17 Synthetic Polymer Membranes
707(7)
5.17.1 Membrane Preparation
707(5)
5.17.1.1 Wet-Extrusion Process
708(1)
5.17.1.2 Hollow Fiber Membranes
709(3)
5.17.2 Membrane Modules
712(1)
5.17.3 Applications
713(1)
5.18 Hydrogels and Smart Polymers
714(8)
5.18.1 Smart Polymers
716(6)
5.19 Dendritic Polymers
722(3)
5.19.1 Applications
724(1)
5.20 Shape Memory Polymers
725(2)
5.21 Microencapsulation
727(10)
5.21.1 Processes for Microencapsulation
728(7)
5.21.1.1 Complex Coacervation
728(1)
5.21.1.2 Polymer-Polymer Incompatibility
729(1)
5.21.1.3 Interfacial and In Situ Polymerization
729(4)
5.21.1.4 Spray Drying
733(1)
5.21.1.5 Fluidized-Bed Coating
733(1)
5.21.1.6 Co-Extrusion Capsule Formation
734(1)
5.21.1.7 Other Processes
734(1)
5.21.2 Applications
735(2)
5.22 Nanosize Polymers
737(5)
5.22.1 Polymer Nanoparticles
737(1)
5.22.2 Polymer Nanospheres
738(1)
5.22.3 Polymer Nanofibers
739(1)
5.22.4 Polymer Nanowires, Nanotubes, and Nanorods
740(2)
5.23 Polymer Nanocomposites
742(1)
5.24 Polymer-Clay Nanocomposites
743(3)
5.25 Polymer-Carbon Nanocomposites
746(18)
5.25.1 Graphite-Based PNCs
747(1)
5.25.2 CNT-Based PNCs
747(6)
5.25.2.1 Nanotube Functionalization
747(1)
5.25.2.2 Nanocomposite Fabrication Methods
748(2)
5.25.2.3 Nanotube Alignment in Composites
750(1)
5.25.2.4 Properties of Nanocomposites
751(2)
5.25.3 Graphene-Based PNCs
753(11)
5.25.3.1 Technical Production of Graphene
754(6)
5.25.3.2 Preparation of Nanocomposites
760(2)
5.25.3.3 Properties of Graphene-PNCs
762(2)
5.26 Microfibrillar/Nanofibrillar Polymer Composites
764(10)
5.26.1 Microfibrillar/Nanofibrillar Polymer-Polymer Composites
765(5)
5.26.1.1 Manufacturing Steps
766(2)
5.26.1.2 Properties and Applications
768(2)
5.26.2 Microfibrillar/Nanofibrillar SPCs
770(4)
5.26.2.1 Manufacturing Steps
770(1)
5.26.2.2 Properties and Applications
771(3)
5.27 Wood-Polymer Composites
774(7)
5.27.1 WPC Feedstocks
775(1)
5.27.1.1 Wood
775(1)
5.27.1.2 Plastics
775(1)
5.27.1.3 Compounded Pellets
776(1)
5.27.1.4 Additives
776(1)
5.27.2 Manufacture of WPC Products
776(3)
5.27.2.1 Compounding
777(1)
5.27.2.2 Extrusion
777(2)
5.27.3 Properties of WPC Products
779(1)
5.27.4 Applications of WPC Products
780(1)
References
781(14)
6 Recycling and Disposal of Waste Plastics
6.1 Introduction
795(4)
6.2 Outline of Recycling Methods
799(5)
6.3 Recycling of Poly (Ethylene Terephthalate)
804(7)
6.3.1 Direct Reuse
804(2)
6.3.2 Reuse after Modification
806(4)
6.3.2.1 Glycolysis
806(2)
6.3.2.2 Methanolysis
808(1)
6.3.2.3 Ammonolysis
808(1)
6.3.2.4 Hydrolysis
809(1)
6.3.2.5 Depolymerization in Supercritical Fluids
809(1)
6.3.2.6 Enzymatic Depolymerization
810(1)
6.3.3 Incineration
810(1)
6.4 Recycling of Polyurethanes
811(4)
6.4.1 Thermopressing Process
811(1)
6.4.2 Kneader Process
812(1)
6.4.3 Hydrolysis
812(3)
6.4.3.1 Glycolysis
813(1)
6.4.3.2 Ammonolysis
813(2)
6.5 Recycling of Poly (Vinyl Chloride)
815(5)
6.5.1 Characterization of Used PVC
816(1)
6.5.2 In-Line PVC Scrap
816(2)
6.5.3 PVC Floor Coverings
818(1)
6.5.4 PVC Roofing Sheets
818(1)
6.5.5 Post-Consumer PVC
819(1)
6.5.6 Vinyloop and Texyloop Processes
819(1)
6.6 Recycling of Cured Epoxies
820(1)
6.7 Recycling of Mixed Plastics Waste
821(4)
6.7.1 Direct Reuse
822(2)
6.7.2 Homogeneous Fractions
824(1)
6.7.3 Liquefaction of Mixed Plastics
825(1)
6.8 Post-Consumer Polyethylene Films
825(1)
6.9 Recycling of Ground Rubber Tires
826(2)
6.10 Recycling of Car Batteries
828(1)
6.11 Plastic Recycling Equipment and Machinery
828(10)
6.11.1 Plastocompactor
829(1)
6.11.2 Debaling and Initial Size Reduction
829(2)
6.11.2.1 Shredder
830(1)
6.11.2.2 Cutter or Guillotine
830(1)
6.11.2.3 Screw Shredder
830(1)
6.11.2.4 Granulators
830(1)
6.11.2.5 Fine Grinding
831(1)
6.11.3 Cleaning and Selection
831(3)
6.11.3.1 Dry Separation
832(2)
6.11.3.2 Wet Separation
834(1)
6.11.3.3 Other Methods
834(1)
6.11.4 Resin Detectors: Type and Configuration
834(2)
6.11.5 Automatic Sortation
836(12)
6.11.5.1 PVC/PET and Commingled Plastics Sortation
836(2)
6.12 Upcycling of Waste Plastics
838(1)
6.13 Plastics Waste Disposal in Landfills
839(2)
6.14 Energy Recovery from Waste Plastics
841(1)
6.15 Disposal of E-Waste Plastics
842(1)
References
843(4)
7 Trends in Polymer Applications
7.1 Introduction
847(1)
7.2 Polymers in Packaging
848(8)
7.2.1 Retorting
850(1)
7.2.2 Asceptic Packaging
850(1)
7.2.3 Hot-Filling
851(1)
7.2.4 Controlled-Atmosphere Packaging
851(1)
7.2.5 High-Barrier Films
851(1)
7.2.6 Oxygen Scavenger-Based Packaging
852(1)
7.2.7 Plastic Bottles
852(1)
7.2.8 Chemical Containers
853(1)
7.2.9 Dual Ovenables
853(1)
7.2.10 Closures
854(1)
7.2.11 Biodegradable Packaging
854(1)
7.2.12 Pharmaceutics Packaging and Nanomedicines
855(1)
7.2.13 Wood-Plastic Composites in Packaging
856(1)
7.3 Polymers in Building and Construction
856(8)
7.3.1 Roofing
857(1)
7.3.2 Flooring
857(1)
7.3.3 Windows
858(1)
7.3.4 Pipes
859(1)
7.3.5 Insulation
859(1)
7.3.6 Polymer-Concrete Composites
860(3)
7.3.6.1 Fiber-Reinforced Polymer in Concrete
862(1)
7.3.7 Wood-Plastic Composites
863(1)
7.3.8 Smart Healable Polymer Composites
863(1)
7.3.9 Biodegradable Composites
864(1)
7.4 Polymers in Corrosion Prevention and Control
864(4)
7.4.1 Flue Gas Desulfurization
865(1)
7.4.2 Chemical Resistant Masonry
865(1)
7.4.3 Piping Systems
866(1)
7.4.4 Boiler and Cooling Water Treatment
866(1)
7.4.5 Biodegradable Scale Inhibitor
866(1)
7.4.6 Reinforcing Steel in Concrete
867(1)
7.5 Plastics in Automotive Applications
868(5)
7.5.1 Exterior Body Parts
868(1)
7.5.2 Interior Components
869(1)
7.5.3 Load-Bearing Parts
870(1)
7.5.4 Under-the-Bonnet (Hood)
870(1)
7.5.5 Future Trends
871(1)
7.5.6 Polymer Nanocomposites
871(1)
7.5.7 "Green" Composites
872(1)
7.6 Polymers in Aerospace Applications
873(2)
7.6.1 Carbon Fibers
873(1)
7.6.2 Resins
874(1)
7.7 Polymers in Electrical and Electronic Applications
875(8)
7.7.1 Wire and Cable Insulation
876(1)
7.7.2 Polymer Insulators
877(1)
7.7.3 Printed Circuit Boards
877(1)
7.7.4 Connectors
877(1)
7.7.5 Enclosures
878(1)
7.7.6 Optical Fibers
878(1)
7.7.7 Information Storage Discs
879(1)
7.7.8 Polymeric FET and LED
880(1)
7.7.9 Polymer-Based Solar Cells
881(2)
7.8 Polymers in Agriculture and Horticulture
883(3)
7.8.1 Plastic Film
884(1)
7.8.2 Plastic Crates
885(1)
7.8.3 Building
885(1)
7.8.4 Pipes and Hoses
885(1)
7.8.5 Greenhouses
885(1)
7.9 Polymers in Domestic Appliances and Business Machines
886(4)
7.9.1 Large Appliances
886(2)
7.9.2 Small Appliances
888(1)
7.9.3 Business Equipment
888(1)
7.9.4 Air Filters
889(1)
7.9.5 Solar Systems
889(1)
7.10 Polymers in Medical and Biomedical Applications
890(5)
7.10.1 Medical Packaging
890(1)
7.10.2 Nontoxic Sterilizable Items
890(2)
7.10.3 Biodegradable Polymers
892(1)
7.10.4 Conducting Polymer Nanotubes
892(1)
7.10.5 Biomimetic Actuators
893(1)
7.10.6 Dental Resin Composites
894(1)
7.10.7 Appliances
894(1)
7.10.8 Disposables
894(1)
7.11 Polymers in Marine and Offshore Applications
895(1)
7.11.1 Cables
895(1)
7.11.2 Coatings
895(1)
7.11.3 Other Applications
896(1)
7.12 Polymers in Sport
896(2)
7.12.1 Synthetic Surfaces
896(1)
7.12.2 Footwear
897(1)
7.12.3 Equipment
897(1)
7.13 Renewable Synthetic Polymers
898(2)
References
900(3)
Appendices
A.1 Trade Names for Some Industrial Polymers
903(12)
A.2 Commonly Used Abbreviations for Industrial Polymers
915(4)
A.3 Formulations of Flame-Retarded Selected Thermoplastics
919(4)
A.4 Formulations of Selected Rubber Compounds
923(4)
A.5 Formulations of Selected PVC Compounds
927(4)
A.6 Formulations of Polyurethane Foams
931(4)
A.7 Conversion of Units
935(2)
A.8 Typical Properties of Polymers Used for Molding and Extrusion
937(6)
A.9 Typical Properties of Cross-Linked Rubber Compounds
943(4)
A.10 Typical Properties of Representative Textile Fibers
947(2)
Index 949
Manas Chanda is emeritus professor in the Department of Chemical Engineering, Indian Institute of Science Bangalore, India. He also worked as a summer-term visiting professor at the University of Waterloo, Ontario, Canada, with regular summer visits during 1980-2000. A five-time recipient of the International Scientific Exchange Award from the National Sciences and Research Council, Canada, Dr. Chanda is the author or coauthor of nearly 100 scientific papers, articles, and books, including Introduction to Polymer Science and Chemistry (CRC Press/Taylor & Francis). A fellow of the Indian National Academy of Engineers and a member of the Indian Plastics Institute, he received the BS (1959) and MSc (1962) degrees from Calcutta University, and the PhD (1966) from the Indian Institute of Science, Bangalore, India.