Muutke küpsiste eelistusi

E-raamat: Plausible Neural Networks for Biological Modelling

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The expression 'Neural Networks' refers traditionally to a class of mathematical algorithms that obtain their proper performance while they 'learn' from examples or from experience. As a consequence, they are suitable for performing straightforward and relatively simple tasks like classification, pattern recognition and prediction, as well as more sophisticated tasks like the processing of temporal sequences and the context dependent processing of complex problems. Also, a wide variety of control tasks can be executed by them, and the suggestion is relatively obvious that neural networks perform adequately in such cases because they are thought to mimic the biological nervous system which is also devoted to such tasks. As we shall see, this suggestion is false but does not do any harm as long as it is only the final performance of the algorithm which counts. Neural networks are also used in the modelling of the functioning of (sub­ systems in) the biological nervous system. It will be clear that in such cases it is certainly not irrelevant how similar their algorithm is to what is precisely going on in the nervous system. Standard artificial neural networks are constructed from 'units' (roughly similar to neurons) that transmit their 'activity' (similar to membrane potentials or to mean firing rates) to other units via 'weight factors' (similar to synaptic coupling efficacies).

Muu info

Springer Book Archives
Preface 1(6)
PART I Fundamentals
1 Biological Evidence for Synapse Modification Relevant for Neural Network Modelling
J.E. Vos
1 Introduction
7(4)
2 The Synapse
11(2)
3 Long Term Potentiation
13(2)
4 Two Characteristic Types of Experiment
15(4)
4.1 Food Discrimination Learning in Chicks
15(3)
4.2 Electrical Stimulation of Nervous Cell Cultures
18(1)
5 Conclusion
19(4)
References and Further Reading
20(3)
2 What is Different with Spiking Neurons?
Wulfram Gerstner
1 Spikes and Rates
23(5)
1.1 Temporal Average -- Spike Count
24(2)
1.2 Spatial Average -- Population Activity
26(1)
1.3 Pulse Coding -- Correlations and Synchrony
27(1)
2 'Integrate and Fire' Model
28(2)
3 Spike Response Model
30(3)
4 Rapid Transients
33(3)
5 Perfect Synchrony
36(2)
6 Coincidence Detection
38(1)
7 Spike Time Dependent Hebbian Learning
39(3)
8 Temporal Coding in the Auditory System
42(1)
9 Conclusion
43(6)
References
45(4)
3 Recurrent Neural Networks: Properties and Models
Jean-Philippe Draye
1 Introduction
49(3)
2 Universality of Recurrent Networks
52(4)
2.1 Discrete Time Dynamics
52(2)
2.2 Continuous Time Dynamics
54(2)
3 Recurrent Learning Algorithms for Static Tasks
56(7)
3.1 Hopfield Network
56(2)
3.2 Boltzmann Machines
58(2)
3.3 Recurrent Backpropagation Proposed by Fernando Pineda
60(3)
4 Recurrent Learning Algorithms for Dynamical Tasks
63(6)
4.1 Backpropagation Through Time
63(1)
4.2 Jordan and Elman Networks
64(1)
4.3 Real Time Recurrent Learning (RTRL)
65(1)
4.3.1 Continuous Time RTRL
65(1)
4.3.2 Discrete Time RTRL
66(1)
4.3.3 Teacher Forced RTRL
67(1)
4.3.4 Considerations about the Memory Requirements
67(1)
4.4 Time Dependent Recurrent Backpropagation (TDRBP)
68(1)
5 Other Recurrent Algorithms
69(1)
6 Conclusion
70(5)
References
72(3)
4 A Derivation of the Learning Rules for Dynamic Recurrent Neural Networks
Henk A.K. Mastebroek
1 A Look into the Calculus of Variations
75(2)
2 Conditions of Constraint
77(1)
3 Applications in Physics: Lagrangian and Hamiltonian Dynamics
78(2)
4 Generalized Coordinates
80(2)
5 Application to Optimal Control Systems
82(3)
6 Time Dependent Recurrent Backpropagation: Learning Rules
85(7)
References
88(4)
PART II Applications to Biology
5 Simulation of the Human Oculomotor Integrator Using a Dynamic Recurrent Neural Network
Jean-Philippe Draye
Guy Cheron
1 Introduction
92(3)
2 The Different Neural Integrator Models
95(4)
3 The Biologically Plausible Improvements
99(5)
3.1 Fixed Sign Connection Weights
100(1)
3.2 Artificial Distance between Inter-Neurons
101(1)
3.3 Numerical Discretization of the Continuous Time Model
101(1)
3.4 The General Supervisor
102(1)
3.5 The Modified Network
103(1)
4 Emergence of Clusters
104(6)
4.1 Definition
105(1)
4.2 Mathematical-Identification of Clusters
106(1)
4.3 Characterization of the Clustered Structure
106(4)
4.4 Particular Locations
110(1)
5 Discussion and Conclusion
110(7)
References
112(5)
6 Pattern Segmentation in an Associative Network of Spiking Neurons
Raphael Ritz
1 The Binding Problem
117(1)
2 Spike Response Model
118(3)
3 Simulation Results
121(8)
3.1 Pattern Retrieval and Synchronization
123(1)
3.2 Pattern Segmentation
124(2)
3.3 Context Sensitive Binding in a Layered Network with Feedback
126(3)
4 Related Work
129(6)
4.1 Segmentation with LEGION
129(1)
4.2 How about Real Brains?
130(1)
References
131(4)
7 Cortical Models for Movement Control
Daniel Bullock
1 Introduction: Constraints on Modeling Biological Neural Networks
135(2)
2 Cellular Firing Patterns in Monkey Cortical Areas 4 and 5
137(3)
3 Anatomical Links between Areas 4 and 5, Spinal Motoneurons, and Sensory Systems
140(1)
4 How Insertion of a Time Delay can Create a Niche for Deliberation
141(1)
5 A Volition--Deliberation Nexus and Voluntary Trajectory Generation
142(4)
6 Cortical--Subcortical Cooperation for Deliberation and Task-Dependent Configuration
146(4)
7 Cortical Layers, Neural Population Codes, and Posture-Dependent Recruitment of Muscle Synergies
150(1)
8 Trajectory Generation in Handwriting and Viapoint Movements
151(4)
9 Satisfying Constraints of Reaching to Intercept or Grasp
155(1)
10 Conclusions: Online Action Composition by Cortical Circuits
156(8)
References
157(7)
8 Implications of Activity Dependent Processes in Spinal Cord Circuits for the Development of Motor Control; a Neural Network Model
J.J. van Heijst
J.E. Vos
1 Introduction
164(1)
2 Sensorimotor Development
165(1)
3 Reflex Contributions to Joint Stiffness
166(1)
4 The Model
167(7)
4.1 Neural Model
168(2)
4.2 Musculo--Skeletal Model
170(2)
4.3 Muscle Model
172(1)
4.4 Sensory Model
173(1)
4.5 Model Dynamics
174(1)
5 Experiments
174(8)
5.1 Training
176(1)
5.2 Neural Control Properties
177(2)
5.3 Perturbation Experiments
179(3)
6 Discussion
182(8)
References
185(5)
9 Cortical Maps as Topology--Representing Neural Networks Applied to Motor Control: Articulatory Speech Synthesis
Pietro Morasso
Vittorio Sanguineti
Francesco Frisone
1 Lateral Connections in Cortical Maps
190(1)
2 A Neural Network Model
191(2)
3 Spatial Maps as Internal Representations for Motor Planning
193(7)
3.1 Dynamical Behavior of Spatial Maps
194(2)
3.2 Function Approximation by Interconnected Maps
196(3)
3.3 Dynamical Inversion
199(1)
4 Application of Cortical Maps to Articulatory Speech Synthesis
200(15)
4.1 Cortical Control of Speech Movements
202(1)
4.2 An Experimental Study
203(1)
4.2.1 The Training Procedure
204(4)
4.2.2 Field Representation of Phonemic Targets
208(3)
4.2.3 Non-Audible Gestures and Compensation
211(1)
4.2.4 Generation of VVV ... Sequences
211(4)
5 Conclusions
215(5)
References
216(4)
10 Line and Edge Detection by Curvature--Adaptive Neural Networks
Jacobus H. van Deemter
Johannes M.H. du Buf
1 Introduction
220(3)
2 Biological Constraints
223(1)
3 Construction of the Gabor Filters
224(1)
4 The One--Dimensional Case
224(1)
5 The Two--Dimensional Case
225(1)
6 Simple Detection Scheme
225(1)
7 An Extended Detection Scheme
226(4)
8 Intermezzo: A Multi--Scale Approach
230(1)
9 Advanced Detection Scheme
231(2)
10 Biological Plausibility of the Adaptive Algorithm
233(2)
11 Conclusion and Discussion
235(6)
References
238(3)
11 Path Planning and Obstacle Avoidance Using a Recurrent Neural Network
Erwin Mulder
Henk A.K. Mastebroek
1 Introduction
241(1)
2 Problem Description
242(1)
3 Task Descriptions
243(5)
3.1 Representations
243(2)
3.2 Fusing the Representations into a Neuronal Map
245(1)
3.3 Path Planning and Heading Decision
246(2)
4 Results
248(3)
5 Conclusions
251(4)
References
253(2)
Index 255