Muutke küpsiste eelistusi

E-raamat: Polarization Bremsstrahlung

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This comprehensive introduction to the theory and applications of polarizational bremsstrahlung has been prepared by leading experts to provide graduate students with a functional understanding of a high-profile sector with enormous practical potential.



This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters.
The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications. Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties.
Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential information required for e.g. plasma diagnostics as well as astrophysical and medical applications (such as radiation therapy).
This book primarily addresses graduate students and researchers with a background in atomic, molecular, optical or plasma physics, but will also be of benefit to anyone wishing to enter the field.
1 Introduction 1(16)
2 Bremsstrahlung in Collisions of Structureless Charged Particles with Atoms and Ions 17(22)
2.1 Peculiar Features of PBrS
17(9)
2.2 Non-Relativistic Distorted Partial Waves Approximation
26(7)
2.2.1 DPWA Series for BrS Amplitude
26(5)
2.2.2 BrS Cross Section
31(2)
2.3 Multipole Series for PBrS Cross Section
33(2)
2.4 BrS Spectrum in the Tip Region
35(4)
3 Polarizational Bremsstrahlung in Collisions with Hydrogen Atom 39(22)
3.1 Generalized Dipole Dynamic Polarizability of a Hydrogen Atom
39(3)
3.2 BrS Cross Section in Collisions with Hydrogen Atom
42(2)
3.3 BrS in Collisions of a Slow Charged Particle with an Excited Hydrogen Atom
44(12)
3.3.1 Adiabatic Approximation
45(3)
3.3.2 Bremsstrahlung Amplitude
48(2)
3.3.3 Cross Section
50(3)
3.3.4 Averaging Procedure
53(1)
3.3.5 Appendix
54(2)
3.4 BrS in Electron and Positron Collision with Positronium
56(5)
4 Cross Section of PBrS from Many-Electron Atoms and Ions 61(60)
4.1 Spectral Distribution of BrS in Vicinity of Giant Resonances
61(7)
4.2 Angular Distribution and Polarization of BrS
68(3)
4.3 Approximate Method to Calculate the PBrS Cross Sections with Account for Many-Electron Correlations
71(6)
4.3.1 Description of the Method
72(1)
4.3.2 Numerical Results
73(4)
4.4 Influence of Photon Absorption and Electron Energy Loss on the PBrS Spectrum in a Solid-State Target
77(4)
4.4.1 Energy Distribution of Scattered Electrons
77(2)
4.4.2 Numerical Results and Experimental Data
79(2)
4.5 BrS Spectra in Broad Range of Photon Energies
81(4)
4.6 'Stripping' Approximation
85(13)
4.6.1 De-screening of an Atom in the BrS Process
85(3)
4.6.2 The 'Stripping' Effect Beyond the Born Approximation
88(3)
4.6.3 Alternative Approach to the 'Stripping' Effect
91(2)
4.6.4 Numerical Results
93(3)
4.6.5 Experimental Results
96(2)
4.7 Bethe Ridge in the PBrS Process
98(7)
4.7.1 Contributions of Various Radiative Processes to the Total Spectrum
98(4)
4.7.2 Analysis of the Bethe Peculiarity in PBrS
102(1)
4.7.3 Numerical Results
103(2)
4.8 Polarizational Mechanism in Electron-Ion Radiative Capture
105(16)
4.8.1 Qualitative Description of the Radiative Capture Channels for Multi-Electron Ionic Targets
107(2)
4.8.2 Formalism
109(6)
4.8.3 Numerical Results
115(6)
5 PBrS in Non-Relativistic Collisions of Structural Particles with Atoms and Ions 121(30)
5.1 Introductory Notes
121(1)
5.2 Collisions of Fast Atomic Particles
122(9)
5.2.1 BrS Amplitude
122(5)
5.2.2 BrS Cross Section
127(2)
5.2.3 Numerical Example: BrS in He + Xe Collision
129(2)
5.3 Effect of Coherence and Total Cross Section of BrS
131(2)
5.4 Polarizational BrS of Inner Electron Shells
133(6)
5.4.1 Scaling Behaviour for the Inner-Shell PBrS Cross Section
135(1)
5.4.2 Numerical Results
136(3)
5.5 BrS in Slow Collisions of Atomic Particles
139(12)
5.5.1 BrS Amplitude
139(3)
5.5.2 BrS Cross Section
142(2)
5.5.3 Hydrogen-Like System
144(5)
5.5.4 Molecular Orbital X-Rays
149(2)
6 Relativistic Effects in the Polarizational BrS Process 151(60)
6.1 Introductory Notes
151(2)
6.2 "Elastic" BrS in Atom-Atom Collisions
153(14)
6.2.1 BrS Amplitude
154(7)
6.2.2 BrS Cross Section
161(6)
6.3 Electron-Atom Collisions
167(7)
6.3.1 BrS Amplitude in a Relativistic Collision
167(2)
6.3.2 Characteristics of PBrS
169(3)
6.3.3 Total BrS Spectrum
172(2)
6.4 Inelastic Collisions. Coherence Effect
174(11)
6.4.1 Amplitude of "Inelastic" PBrS
174(2)
6.4.2 Spectral-Angular Distribution of PBrS
176(7)
6.4.3 Spectral Distribution of PBrS
183(2)
6.5 Relativistic Effects Due to Internal Structure of Particles
185(26)
6.5.1 Amplitude of PBrS
186(7)
6.5.2 Limiting Cases of the Relativistic PBrS Amplitude
193(1)
6.5.3 Cross Section of PBrS
194(5)
6.5.4 Numerical Results
199(6)
6.5.5 Appendix A: Relativistic DPWA Formalism for PBrS
205(4)
6.5.6 Appendix B: Generalized Polarizabilities Expressed in Terms of Relativistic Green's Function
209(2)
7 PBrS from Atomic Clusters and Fullerenes 211(34)
7.1 Introduction
211(1)
7.2 Plasmon Resonance Approximation
212(17)
7.2.1 Polarizabilities of Metal Clusters and Fullerenes
213(4)
7.2.2 BrS Cross Section
217(6)
7.2.3 BrS in Electron-Fullerene Collisions
223(3)
7.2.4 Electron-Metal-Cluster Collisions
226(3)
7.3 Calculation of PBrS Cross Section by Means of Many-Body Theory
229(5)
7.4 Radiative Electron Capture by Metal Clusters
234(11)
7.4.1 Cross Section of Radiative Capture
235(3)
7.4.2 Numerical Results for Na+20 and Ag+11
238(2)
7.4.3 Non-Radiative Capture by Means of Many-Body Theory
240(5)
8 Conclusion 245(2)
9 References 247(28)
Index 275