Muutke küpsiste eelistusi

E-raamat: Political Analysis Using R

  • Formaat: PDF+DRM
  • Sari: Use R!
  • Ilmumisaeg: 14-Dec-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319234465
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Use R!
  • Ilmumisaeg: 14-Dec-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319234465

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a narrative of how R can be useful in the analysis of public administration, public policy, and political science data specifically, in addition to the social sciences more broadly. It can serve as a textbook and reference manual for students and independent researchers who wish to use R for the first time or broaden their skill set with the program. While the book uses data drawn from political science, public administration, and policy analyses, it is written so that students and researchers in other fields should find it accessible and useful as well. By the end of the first seven chapters, an entry-level user should be well acquainted with how to use R as a traditional econometric software program. The remaining four chapters will begin to introduce the user to advanced techniques that R offers but many other programs do not make available such as how to use contributed libraries or write programs in R.The book details how to perform nearly every task rout

inely associated with statistical modeling: descriptive statistics, basic inferences, estimating common models, and conducting regression diagnostics. For the intermediate or advanced reader, the book aims to open up the wide array of sophisticated methods options that R makes freely available. It illustrates how user-created libraries can be installed and used in real data analysis, focusing on a handful of libraries that have been particularly prominent in political science. The last two chapters illustrate how the user can conduct linear algebra in R and create simple programs. A key point in these chapters will be that such actions are substantially easier in R than in many other programs, so advanced techniques are more accessible in R, which will appeal to scholars and policy researchers who already conduct extensive data analysis. Additionally, the book should draw the attention of students and teachers of quantitative methods in the political disciplines.

Obtaining R and Downloading Packages.- Loading and Manipulating Data.- Visualizing Data.- Descriptive Statistics.- Basic Inferences.- Linear Models and Regression.- Diagnostics.- Generalized Linear Models.- Using Libraries to Apply Advanced Models.- Time Series Analysis.- Linear Algebra with Programming Applications.- Additional Programming Tools.
1 Obtaining R and Downloading Packages
1(12)
1.1 Background and Installation
1(2)
1.1.1 Where Can I Get R?
2(1)
1.2 Getting Started: A First Session in R
3(4)
1.3 Saving Input and Output
7(2)
1.4 Work Session Management
9(1)
1.5 Resources
10(1)
1.6 Practice Problems
11(2)
2 Loading and Manipulating Data
13(20)
2.1 Reading in Data
14(5)
2.1.1 Reading Data from Other Programs
17(1)
2.1.2 Data Frames in R
17(1)
2.1.3 Writing Out Data
18(1)
2.2 Viewing Attributes of the Data
19(1)
2.3 Logical Statements and Variable Generation
20(2)
2.4 Cleaning Data
22(4)
2.4.1 Subsetting Data
23(1)
2.4.2 Recoding Variables
24(2)
2.5 Merging and Reshaping Data
26(5)
2.6 Practice Problems
31(2)
3 Visualizing Data
33(20)
3.1 Univariate Graphs in the base Package
35(5)
3.1.1 Bar Graphs
38(2)
3.2 The plot Function
40(7)
3.2.1 Line Graphs with plot
43(2)
3.2.2 Figure Construction with plot: Additional Details
45(1)
3.2.3 Add-On Functions
46(1)
3.3 Using lattice Graphics in R
47(2)
3.4 Graphic Output
49(1)
3.5 Practice Problems
50(3)
4 Descriptive Statistics
53(10)
4.1 Measures of Central Tendency
54(6)
4.1.1 Frequency Tables
57(3)
4.2 Measures of Dispersion
60(2)
4.2.1 Quantiles and Percentiles
61(1)
4.3 Practice Problems
62(1)
5 Basic Inferences and Bivariate Association
63(16)
5.1 Significance Tests for Means
64(7)
5.1.1 Two-Sample Difference of Means Test, Independent Samples
66(3)
5.1.2 Comparing Means with Dependent Samples
69(2)
5.2 Cross-Tabulations
71(3)
5.3 Correlation Coefficients
74(2)
5.4 Practice Problems
76(3)
6 Linear Models and Regression Diagnostics
79(20)
6.1 Estimation with Ordinary Least Squares
80(4)
6.2 Regression Diagnostics
84(12)
6.2.1 Functional Form
85(4)
6.2.2 Heteroscedasticity
89(1)
6.2.3 Normality
90(3)
6.2.4 Multicollinearity
93(1)
6.2.5 Outliers, Leverage, and Influential Data Points
94(2)
6.3 Practice Problems
96(3)
7 Generalized Linear Models
99(28)
7.1 Binary Outcomes
100(10)
7.1.1 Logit Models
101(3)
7.1.2 Probit Models
104(1)
7.1.3 Interpreting Logit and Probit Results
105(5)
7.2 Ordinal Outcomes
110(6)
7.3 Event Counts
116(7)
7.3.1 Poisson Regression
117(2)
7.3.2 Negative Binomial Regression
119(2)
7.3.3 Plotting Predicted Counts
121(2)
7.4 Practice Problems
123(4)
8 Using Packages to Apply Advanced Models
127(30)
8.1 Multilevel Models with lme4
128(6)
8.1.1 Multilevel Linear Regression
128(3)
8.1.2 Multilevel Logistic Regression
131(3)
8.2 Bayesian Methods Using MCMCpack
134(6)
8.2.1 Bayesian Linear Regression
134(4)
8.2.2 Bayesian Logistic Regression
138(2)
8.3 Causal Inference with cem
140(7)
8.3.1 Covariate Imbalance, Implementing CEM, and the ATT
141(4)
8.3.2 Exploring Different CEM Solutions
145(2)
8.4 Legislative Roll Call Analysis with wnominate
147(6)
8.5 Practice Problems
153(4)
9 Time Series Analysis
157(30)
9.1 The Box-Jenkins Method
158(9)
9.1.1 Transfer Functions Versus Static Models
163(4)
9.2 Extensions to Least Squares Linear Regression Models
167(8)
9.3 Vector Autoregression
175(6)
9.4 Further Reading About Time Series Analysis
181(2)
9.5 Alternative Time Series Code
183(2)
9.6 Practice Problems
185(2)
10 Linear Algebra with Programming Applications
187(18)
10.1 Creating Vectors and Matrices
188(6)
10.1.1 Creating Matrices
189(3)
10.1.2 Converting Matrices and Data Frames
192(1)
10.1.3 Subscripting
193(1)
10.2 Vector and Matrix Commands
194(4)
10.2.1 Matrix Algebra
195(3)
10.3 Applied Example: Programming OLS Regression
198(4)
10.3.1 Calculating OLS by Hand
198(3)
10.3.2 Writing An OLS Estimator in R
201(1)
10.3.3 Other Applications
202(1)
10.4 Practice Problems
202(3)
11 Additional Programming Tools
205(28)
11.1 Probability Distributions
206(1)
11.2 Functions
207(3)
11.3 Loops
210(2)
11.4 Branching
212(3)
11.5 Optimization and Maximum Likelihood Estimation
215(2)
11.6 Object-Oriented Programming
217(6)
11.6.1 Simulating a Game
219(4)
11.7 Monte Carlo Analysis: An Applied Example
223(7)
11.7.1 Strategic Deterrence Log-Likelihood Function
225(2)
11.7.2 Evaluating the Estimator
227(3)
11.8 Practice Problems
230(3)
References 233(4)
Index 237
James Monogan is an assistant professor in the Department of Political Science at the University of Georgia. After completing his B.A. in political science at the University of South Carolina in 2003, he attended the University of North Carolina where he earned his M.A. in 2005 and Ph.D. in 2010. He then worked as a visiting assistant professor for the Center for Applied Statistics and Department of Political Science at Washington University in St. Louis until he began work at UGA in 2011.

Jamess research and teaching has focused on political methodology and American political behavior. As a political methodologist, his research has focused on geospatial data analysis and time series analysis. In the area of political behavior, he addresses questions about representation in the United States.