Muutke küpsiste eelistusi

E-raamat: Polymer Nanocomposites based on Inorganic and Organic Nanomaterials

Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 208,65 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book covers all aspects of the different classes of nanomaterials - from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements. The book encompasses synthesis and properties of cellulose nanofibers, bacterial nanocellulose, carbon nanotubes / nanofibers, graphene, nanodiamonds, nanoclays, inorganic nanomaterials and their nanocomposites for high-end applications such as electronic devices, energy storage,structural and packaging. The book also provides insight into various modification techniques for improving the functionality of nanomaterials apart from their compatibility with the base matrix"--

"This book covers all aspects of the different classes of nanomaterials -- from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements"--

This book covers all aspects of the different classes of nanomaterials – from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements.  The book encompasses synthesis and properties of cellulose nanofibers, bacterial nanocellulose, carbon nanotubes / nanofibers, graphene, nanodiamonds, nanoclays, inorganic nanomaterials and their nanocomposites for high-end applications such as electronic devices, energy storage, structural and packaging. The book also provides insight into various modification techniques for improving the functionality of nanomaterials apart from their compatibility with the base matrix.

Part I: Nanomaterials
1 Cellulose Nanofibers: Synthesis, Properties and Applications
3(36)
Mahuya Das
Rupa Bhattacharyya
1.1 Introduction
3(1)
1.2 Synthesis of Cellulose Nanofibers
4(10)
1.2.1 Synthesis of Nanocellulose Fibers by Electrospinning Technique
7(1)
1.2.2 Synthesis of Cellulose Nanofibers by Acid Hydrolysis
7(1)
1.2.3 Synthesis of Nanocellulose Fibers by Alkaline Hydrolysis
8(1)
1.2.4 Synthesis by Treatment with Organic and Ionic Solvents
9(1)
1.2.5 Isolation of Nanocellulose Fibers by Mechanical Methods
10(1)
1.2.6 Isolation by Microwave and Gamma Radiation
11(1)
1.2.7 Isolation in the Presence of Enzymes
11(1)
1.2.8 Synthesis of Nanocellulose Fibers by Combination Method
12(2)
1.3 Properties of Cellulose Nanofibers
14(14)
1.3.1 Nanocellulose Dimensions and Crystallinity
14(4)
1.3.2 Viscosity
18(1)
1.3.3 Mechanical Properties
18(4)
1.3.4 Barrier Properties
22(2)
1.3.5 Surface Modification
24(1)
1.3.6 Thermal Properties
24(1)
1.3.7 Adhesion Property
25(3)
1.4 Applications of Nanocellulose Fibers
28(4)
1.4.1 Composite and Construction Material
28(1)
1.4.2 Transparent Polymer-NFC Nanocomposites
29(1)
1.4.3 Concrete and Cementicious Materials
29(1)
1.4.4 Porous Materials and Fiber Web Structures
29(1)
1.4.5 Nanocellulose Scaffolds for Tissue Engineering
30(1)
1.4.6 Nanocellulose as Barrier Materials
30(1)
1.4.7 Use of Nanocellulose Fibers as Functional Additives
30(1)
1.4.8 Nanocelluloses as Rheological Modifiers
31(1)
1.4.9 Foams
31(1)
1.5 Conclusion
32(1)
References
33(6)
2 Bacterial Nanocellulose: Synthesis, Properties and Applications
39(24)
M.L. Foresti
P. Cerrutti
A. Vazquez
2.1 Introduction
39(2)
2.2 Bacterial Nanocellulose Synthesis
41(8)
2.2.1 Producer Strains
41(1)
2.2.2 BNC Biosynthesis
42(1)
2.2.3 Factors Affecting BNC Production
43(6)
2.3 Bacterial Nanocellulose Properties
49(3)
2.4 Bacterial Nanocellulose Applications
52(5)
2.5 Conclusions
57(1)
References
58(5)
3 Carbon Nanofibers: Synthesis, Properties and Applications
63(26)
Tanmoy Rath
3.1 Introduction
63(2)
3.2 Carbon Nanofiber Structure and Defects
65(2)
3.2.1 Defects
66(1)
3.3 Synthesis
67(10)
3.3.1 Arc Discharge
68(1)
3.3.2 Chemical Vapor Deposition (CVD)
69(2)
3.3.3 Plasma-Enhanced Chemical-Vapor Deposition (PECVD)
71(2)
3.3.4 Alcohol Catalytic Chemical Vapor Deposition
73(1)
3.3.5 Hot Filament-Assisted Sputtering
73(1)
3.3.6 Pyrolysis
73(1)
3.3.7 Pyrolysis of Electrospun Nanofibers
74(2)
3.3.8 Pyrolysis of CellNFs
76(1)
3.4 Growth Mechanism of CNFs
77(1)
3.5 Properties
78(4)
3.5.1 Mechanical Properties of CNFs
78(2)
3.5.2 Electrical Properties of CNFs
80(1)
3.5.3 Thermal Properties of CNFs
80(1)
3.5.4 Adsorption Properties
81(1)
3.6 Applications
82(2)
3.7 Conclusion
84(1)
References
85(4)
4 Carbon Nanotubes: Synthesis, Properties and Applications
89(50)
Raghunandan Sharma Poonam Benjwal
Kamal K. Kar
4.1 Introduction
89(2)
4.2 Carbon Nanostructures
91(6)
4.2.1 Classifications
92(5)
4.3 Structure: Chirality
97(2)
4.4 Synthesis
99(4)
4.4.1 Arc Discharge
100(1)
4.4.2 Laser Ablation
100(1)
4.4.3 Chemical Vapor Deposition
101(1)
4.4.4 Purification
102(1)
4.5 Characterizations
103(5)
4.5.1 X-ray Diffraction
103(1)
4.5.2 Scanning Electron Microscopy
104(1)
4.5.3 Transmission Electron Microscopy
105(1)
4.5.4 Atomic Force and Scanning Tunneling Microscopy
106(1)
4.5.5 Raman Spectroscopy
107(1)
4.5.6 Thermogravimetric Analysis
108(1)
4.6 Properties
108(4)
4.6.1 Electronic Properties
109(2)
4.6.2 Mechanical Properties
111(1)
4.7 Applications
112(19)
4.7.1 Energy
113(6)
4.7.2 Electronic Devices
119(5)
4.7.3 Wastewater Purification
124(1)
4.7.4 Dry Adhesives
125(2)
4.7.5 Superhydrophobicity
127(1)
4.7.6 Stretchable Structure
128(3)
4.8 Conclusions
131(1)
Acknowledgement
132(1)
References
132(7)
5 Graphene: Synthesis, Properties and Application
139(56)
Subash Chandra Sahu
Aneeya K. Samantara
Jagdeep Mohanta
Bikash Kumar Jena
Satyabrata Si
5.1 Introduction
140(2)
5.2 History of Graphene
142(1)
5.3 Natural Occurrence
143(1)
5.4 Carbon Allotropes
144(3)
5.4.1 Fullerene (OD)
144(1)
5.4.2 Carbon Nanotube (1D)
145(1)
5.4.3 Graphene (2D)
145(1)
5.4.4 Graphite (3D)
146(1)
5.5 Molecular Structure and Chemistry of Graphene
147(1)
5.6 Properties of Graphene
147(6)
5.6.1 Optical Property
147(2)
5.6.2 Electrical Property
149(1)
5.6.3 Electronic Properties
149(1)
5.6.4 Quantum Hall Effect
150(1)
5.6.5 Mechanical Property
151(1)
5.6.6 Thermal and Thermoelectric Properties
152(1)
5.7 Synthesis of Graphene
153(2)
5.8 Biomedical Application of Graphene
155(11)
5.8.1 Graphene in Drug and Gene Delivery
156(3)
5.8.2 Graphene in Cancer Therapy
159(2)
5.8.3 Graphene in Bioimaging
161(2)
5.8.4 Graphene in Chemo- and Biosensing
163(3)
5.9 Graphene in Energy
166(8)
5.9.1 Graphene in Lithium Ion Battery
166(2)
5.9.2 Graphene in Fuel Cells
168(2)
5.9.3 Graphene in Solar Cells
170(3)
5.9.4 Graphene in Supercapacitor
173(1)
5.10 Graphene in Electronics
174(3)
5.11 Graphene in Catalysis
177(1)
5.12 Graphene Composites
177(2)
5.13 Conclusion and Perspective
179(1)
Acknowledgement
180(1)
References
181(14)
6 Nanoclays: Synthesis, Propeities and Applications
195(20)
Biswabandita Kar
Dibyaranjan Rout
6.1 Introduction
195(1)
6.2 Structure and Properties of Nanoclays
196(7)
6.3 Synthesis of Polymer-Clay Nanocomposites
203(3)
6.3.1 In-Situ Polymerization
203(2)
6.3.2 Solution-Induced Intercalation Method
205(1)
6.3.3 Melt Processing Method
206(1)
6.4 Applications of Nanoclays
206(5)
6.5 Conclusion
211(1)
References
212(3)
7 Applications for Nanocellulose in Polyolefins-Based Composites
215(14)
Alcides Lopes Leao
Bibin Mathew Cherian
Suresh Narine
Mohini Sain
Sivoney Souza
Sabu Thomas
7.1 Introduction
215(9)
7.2 Flexural Strength
224(3)
References
227(2)
8 Recent Progress in Nanocomposites Based on Carbon Nanomaterials and Electronically Conducting Polymers
229(30)
Jayesh Cherusseri
Kamal K. Kar
8.1 Introduction
230(1)
8.2 Electronically Conducting Polymers
230(3)
8.2.1 Salient Features
230(1)
8.2.2 Synthesis
231(1)
8.2.3 Nanostructures
232(1)
8.2.4 Doping
233(1)
8.3 Carbon Nanomaterials
233(2)
8.3.1 Types
233(1)
8.3.2 Properties
233(1)
8.3.3 Syntheses
234(1)
8.4 Why Nanocomposites?
235(1)
8.4.1 Importance
235(1)
8.4.2 Preparation
236(1)
8.5 Electronically Conducting Polymer/Fullerene Nano composites
236(4)
8.5.1 Polyaniline/Fullerene Nanocomposites
237(2)
8.5.2 Polythiophene/Fullerene Nanocomposites
239(1)
8.5.3 Polyacetylene/Fullerene Nanocomposites
240(1)
8.6 Electronically Conducting Polymer/Carbon Nanofiber Nano composites
240(3)
8.6.1 Polyaniline/Carbon Nanofiber Nanocomposites
240(2)
8.6.2 Polypyrrole/Carbon Nanofiber Nanocomposites
242(1)
8.6.3 Polythiophene/Carbon Nanofiber Nanocomposites
243(1)
8.7 Electronically Conducting Polymer/Carbon Nanotube Nanocomposites
243(3)
8.7.1 Polyaniline/Carbon Nanotube Nanocomposites
243(2)
8.7.2 Polypyrrole/Carbon Nanotube Nanocomposites
245(1)
8.7.3 Polythiophene/Carbon Nanotube Nanocomposites
245(1)
8.7.4 Polyacetylene/Carbon Nanotube Nanocomposites
246(1)
8.8 Electronically Conducting Polymer/Graphene Nano composites
246(3)
8.8.1 Polyaniline/Graphene Nanocomposites
246(2)
8.8.2 Polypyrrole/Graphene Nanocomposites
248(1)
8.8.3 Polythiophene/Graphene Nanocomposites
249(1)
8.8.4 Polyacetylene/Graphene Nanocomposites
249(1)
8.9 Applications
249(3)
8.9.1 Energy Conversion Devices
250(1)
8.9.2 Energy Storage Devices
251(1)
8.9.3 Sensors
252(1)
8.9.4 Actuators
252(1)
8.9.5 Optoelectronics
252(1)
8.9.6 Electromagnetic Shielding
252(1)
8.9.7 Microwave Absorbers
252(1)
8.10 Conclusions
252(1)
Acknowledgement
253(1)
References
253(6)
Part II: Nanocomposites Based on Inorganic Nanoparticles
9 Nanocomposites Based on Inorganic Nanoparticles
259(88)
M. Balasubramanian
P. Jawahar
9.1 Introduction
260(13)
9.1.1 Nano-clay
260(2)
9.1.2 Characteristics of Montmorillonite
262(2)
9.1.3 Chemical Modification of Montmorillonite
264(5)
9.1.4 Characterization of Modified Clays
269(1)
9.1.5 Inorganic Nanoparticles
270(2)
9.1.6 Inorganic Nanoparticle Modification
272(1)
9.1.7 Characterization of Modified Nanoparticles
272(1)
9.2 Processing of Clay-Polymer Nanocomposites (CPN)
273(10)
9.2.1 Solution Intercalation
273(1)
9.2.2 In-situ Intercalative Polymerization
274(1)
9.2.3 Melt Intercalation
275(1)
9.2.4 Differential Scanning Calorimetric Studies
276(5)
9.2.5 Rheological Properties
281(2)
9.3 Particulate-Polymer Nanocomposites Processing
283(9)
9.3.1 Melt Processing
283(1)
9.3.2 In-situ Formation of Nanoparticles in a Polymer Matrix
284(1)
9.3.3 In-situ Polymerization in the Presence of Nanoparticles
284(2)
9.3.4 In-situ Formation of Nanoparticles and Polymer Matrix
286(1)
9.3.5 Curing Kinetics
286(3)
9.3.6 Crystallization Behavior of Thermoplastic Nanocomposites
289(3)
9.4 Characterization of Polymer Nanocomposites
292(9)
9.4.1 Characterization of Clay-Polymer Nanocomposites
292(6)
9.4.2 Characterization of Nanoparticle-Polymer Nanocomposites
298(3)
9.5 Properties of Polymer Nanocomposites
301(35)
9.5.1 Thermal Stability
301(3)
9.5.2 Dynamic Mechanical Analysis
304(6)
9.5.3 Tensile Properties
310(13)
9.5.4 Impact Property
323(6)
9.5.5 Degradation Behavior of Nanocomposites under NO. Environment
329(2)
9.5.6 Tribological Properties
331(3)
9.5.7 Water Absorption Properties
334(2)
9.6 Application of Nanocomposites
336(6)
9.6.1 Applications of Clay-Polymer Nanocomposies
336(5)
9.6.2 Applications of Inorganic Particle-Reinforced Composites
341(1)
References
342(5)
10 Polymer Nanocomposites Reinforced with Functionalized Carbon Nanomaterials: Nanodiamonds, Carbon Nanotubes and Graphene
347(56)
F. Navarro-Pardo
A.L. Martinez-Hernandez
C. Velasco-Santos
10.1 Introduction
348(1)
10.2 Synthesis of Carbon Nanomaterials
349(2)
10.2.1 Nanodiamonds
350(1)
10.2.2 Carbon Nanotubes
350(1)
10.2.3 Graphene
351(1)
10.3 Functionalization
351(7)
10.3.1 Nanodiamond Functionalization
352(1)
10.3.2 CNT Functionalization
353(3)
10.3.3 Graphene Functionalization
356(2)
10.4 Methods of Nanocomposite Preparation
358(2)
10.4.1 Dispersion and Orientation
359(1)
10.5 Properties
360(26)
10.5.1 Dynamical Mechanical Properties
362(8)
10.5.2 Tribological Properties
370(5)
10.5.3 Hardness
375(4)
10.5.4 Scratching
379(7)
10.6 Concluding Remarks
386(1)
References
386(17)
Part III: Green Nanocomposites
11 Green Nanocomposites from Renewable Resource-Based Biodegradable Polymers and Environmentally Friendly Blends
403(42)
P.J. Jandas
S. Mohanty
S.K. Nayak
11.1 Introduction
404(3)
11.2 Organically Modified Layered Silicates Reinforced Biodegradable Nanocomposites: New Era of Polymer Composites
407(18)
11.2.1 Preparation and Processing of Biodegradable Polymer Nano,composites
407(2)
11.2.2 Organically Modified Layered Silicate Reinforced PHB Nanocomposites
409(1)
11.2.3 Organically Modified Layered Silicate Reinforced Thermoplastic Starch (TPS) Nanocomposites
409(1)
11.2.4 Organically Modified Layered Silicate Reinforced Cellulose Nanocomposites
410(1)
11.2.5 Organically Modified Layered Silicate Reinforced PLA Nanacomposites
411(8)
11.2.6 Effect of Organomodifiers Structure on the Biodegradable Polymer Nanocomposite Properties
419(2)
11.2.7 Biodegradation of PLA Nanocomposites
421(4)
11.3 Environmentally Friendly Polymer Blends from Renewable Resources
425(11)
11.3.1 Aliphatic Polyester Blends
425(2)
11.3.2 Factors Affecting Properties of Biodegradable Polymer Blends
427(2)
11.3.3 Miscibility and Compatibility
429(5)
11.3.4 Compatibilization of Biodegradable Polymers
434(2)
11.4 Applications and Prototype Development
436(1)
11.5 Future Perspectives
436(1)
11.6 Conclusion
437(1)
References
438(7)
Part IV: Applications of Polymer Nanocomposites
12 Nanocomposites for Device Applications
445(38)
V.G. Sreevalsa
12.1 Introduction
446(1)
12.2 Nonvolatile Memory Devices
447(4)
12.3 Fabrication of Nonvolatile Memory Devices Utilizing Graphene Materials Embedded in a Polymer Matrix
451(1)
12.4 Electric-Field-Induced Resistive Switching
452(3)
12.5 Nanocomposite Solar Cells
455(2)
12.6 Thin-Film Capacitors for Computer Chips
457(1)
12.7 Solid Polymer Electrolyes for Batteries
457(1)
12.8 Automotive Engine Parts and Fuel Tanks
458(1)
12.9 Oxygen and Gas Barriers
459(1)
12.10 Printing Technologies
459(2)
12.11 Capacitors
461(1)
12.12 Inductors
461(1)
12.13 Optical Waveguides
462(1)
12.14 Low-K and Low-Loss Composites
463(1)
12.15 ZnO-Based Nanocomposites
463(1)
12.16 Functional Polymer Nanocomposites
464(1)
12.17 Plasmonics
464(1)
12.18 Polymer Nanocomposites
465(10)
12.18.1 PS/ZnO Nanocomposite Films
466(6)
12.18.2 PVA/ZnO Nanocomposite Films
472(3)
12.19 Magnetically Active Nanocomposites
475(4)
12.20 Nanocomposites of Nature
479(1)
References
479(4)
13 Polymer Nanocomposites for Energy Storage Applications
483(22)
Sutapa Ghosh
Naresh Chilaka
13.1 Introduction
483(2)
13.2 Energy Storage Mechanism in Supercapacitor and Batteries
485(3)
13.3 Synthesis of Conducting Polymers
488(3)
13.3.1 Chemical Polymerization
488(1)
13.3.2 Electrochemical Polymerization
489(1)
13.3.3 Synthesis of Conducting Polymer Nanocomposite
490(1)
13.4 Characterization of Nano composites: Structure, Electrical, Chemical Composition and Surface Area
491(3)
13.4.1 Electrochemical Characterizations
491(3)
13.5 Conducting Polymer Nanocomposites for Energy Storage Application
494(5)
13.5.1 Polypyrrole Nanocomposites
495(1)
13.5.2 Polythiophene Nanocomposites
496(1)
13.5.3 Polyaniline Nanocomposites
497(2)
13.6 Future of Graphene and Conducting Polymer Nancomposites
499(1)
13.7 Conclusions and Future Research Initiatives
500(1)
References
501(4)
14 Polymer Nanocomposites for Structural Applications
505(14)
M. Mollo
C. Bernal
14.1 Introduction
506(4)
14.2 Nanocomposite Fibers
510(2)
14.3 Nano-Enhanced Conventional Composites
512(1)
14.4 Nano-Enhanced All-Polymer Composites
513(1)
14.5 Single Polymer Nanocomposites
514(1)
14.6 Summary, Conclusions and Future Trends
515(2)
References
517(2)
15 Nanocomposites in Food Packaging
519(54)
Mahuya Das
15.1 Introduction
519(4)
15.2 Nanoreinforcements in Food Packaging Materials
523(15)
15.2.1 Layered Silicate Nanoreinforcements
523(5)
15.2.2 Cellulose Nanoreinforcements
528(8)
15.2.3 Other Nanoreinforcements
536(2)
15.3 Polymer Matrix for Nanocomposite
538(3)
15.3.1 Starch and Its Derivates
539(1)
15.3.2 Polylactic Acid (PLA)
539(1)
15.3.3 Polyhydroxybutyrate (PHB)
540(1)
15.3.4 Polycaprolactone (PLC)
541(1)
15.4 Recent Trends in Packaging Developed by Application of Nanocomposites
541(10)
15.4.1 Nanocomposite-based Edible Food Packaging
541(2)
15.4.2 Role of Nanocomposites in Active Food Packaging
543(1)
15.4.3 Antimicrobial Systems
544(5)
15.4.4 Oxygen Scavengers
549(1)
15.4.5 Enzyme Immobilization Systems
550(1)
15.5 Application of Nanocomposites as Nanosensor for Smart/Intelligent Packaging
551(5)
15.5.1 Detection of Small Organic Molecules
551(2)
15.5.2 Detection of Gases
553(1)
15.5.3 Detection of Microorganisms
554(1)
15.5.4 Time-Temperature Integrators
555(1)
15.6 Conclusion
556(1)
References
557(16)
Index 573
Smita Mohanty is working as a Senior Scientist at the Laboratory for Advanced Research in Polymeric Materials (LARPM), an exclusive R&D wing of Central Institute of Plastics Engineering & Technology (CIPET), at Bhubaneswar, India. She has 55 research publications and 5 patents to her credit.

Sanjay Kumar Nayak is the Professor & Chair of LARPM. For 4 years he has been heading the operations of 15 CIPET centers situated at 22 locations in India. He has published more than 150 research papers and 5 patents.

B. S. Kaith is a professor in the Department of Chemistry at Dr. B.R. Ambedkar National Institute of Technology Jalandhar, India and has more than 150 research papers in national and international journals.

Susheel Kalia is Assitant Professor in the department of Chemistry, Bahra University, India.