Part I: Nanomaterials |
|
|
1 Cellulose Nanofibers: Synthesis, Properties and Applications |
|
|
3 | (36) |
|
|
|
|
3 | (1) |
|
1.2 Synthesis of Cellulose Nanofibers |
|
|
4 | (10) |
|
1.2.1 Synthesis of Nanocellulose Fibers by Electrospinning Technique |
|
|
7 | (1) |
|
1.2.2 Synthesis of Cellulose Nanofibers by Acid Hydrolysis |
|
|
7 | (1) |
|
1.2.3 Synthesis of Nanocellulose Fibers by Alkaline Hydrolysis |
|
|
8 | (1) |
|
1.2.4 Synthesis by Treatment with Organic and Ionic Solvents |
|
|
9 | (1) |
|
1.2.5 Isolation of Nanocellulose Fibers by Mechanical Methods |
|
|
10 | (1) |
|
1.2.6 Isolation by Microwave and Gamma Radiation |
|
|
11 | (1) |
|
1.2.7 Isolation in the Presence of Enzymes |
|
|
11 | (1) |
|
1.2.8 Synthesis of Nanocellulose Fibers by Combination Method |
|
|
12 | (2) |
|
1.3 Properties of Cellulose Nanofibers |
|
|
14 | (14) |
|
1.3.1 Nanocellulose Dimensions and Crystallinity |
|
|
14 | (4) |
|
|
18 | (1) |
|
1.3.3 Mechanical Properties |
|
|
18 | (4) |
|
|
22 | (2) |
|
1.3.5 Surface Modification |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (3) |
|
1.4 Applications of Nanocellulose Fibers |
|
|
28 | (4) |
|
1.4.1 Composite and Construction Material |
|
|
28 | (1) |
|
1.4.2 Transparent Polymer-NFC Nanocomposites |
|
|
29 | (1) |
|
1.4.3 Concrete and Cementicious Materials |
|
|
29 | (1) |
|
1.4.4 Porous Materials and Fiber Web Structures |
|
|
29 | (1) |
|
1.4.5 Nanocellulose Scaffolds for Tissue Engineering |
|
|
30 | (1) |
|
1.4.6 Nanocellulose as Barrier Materials |
|
|
30 | (1) |
|
1.4.7 Use of Nanocellulose Fibers as Functional Additives |
|
|
30 | (1) |
|
1.4.8 Nanocelluloses as Rheological Modifiers |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (6) |
|
2 Bacterial Nanocellulose: Synthesis, Properties and Applications |
|
|
39 | (24) |
|
|
|
|
|
39 | (2) |
|
2.2 Bacterial Nanocellulose Synthesis |
|
|
41 | (8) |
|
|
41 | (1) |
|
|
42 | (1) |
|
2.2.3 Factors Affecting BNC Production |
|
|
43 | (6) |
|
2.3 Bacterial Nanocellulose Properties |
|
|
49 | (3) |
|
2.4 Bacterial Nanocellulose Applications |
|
|
52 | (5) |
|
|
57 | (1) |
|
|
58 | (5) |
|
3 Carbon Nanofibers: Synthesis, Properties and Applications |
|
|
63 | (26) |
|
|
|
63 | (2) |
|
3.2 Carbon Nanofiber Structure and Defects |
|
|
65 | (2) |
|
|
66 | (1) |
|
|
67 | (10) |
|
|
68 | (1) |
|
3.3.2 Chemical Vapor Deposition (CVD) |
|
|
69 | (2) |
|
3.3.3 Plasma-Enhanced Chemical-Vapor Deposition (PECVD) |
|
|
71 | (2) |
|
3.3.4 Alcohol Catalytic Chemical Vapor Deposition |
|
|
73 | (1) |
|
3.3.5 Hot Filament-Assisted Sputtering |
|
|
73 | (1) |
|
|
73 | (1) |
|
3.3.7 Pyrolysis of Electrospun Nanofibers |
|
|
74 | (2) |
|
3.3.8 Pyrolysis of CellNFs |
|
|
76 | (1) |
|
3.4 Growth Mechanism of CNFs |
|
|
77 | (1) |
|
|
78 | (4) |
|
3.5.1 Mechanical Properties of CNFs |
|
|
78 | (2) |
|
3.5.2 Electrical Properties of CNFs |
|
|
80 | (1) |
|
3.5.3 Thermal Properties of CNFs |
|
|
80 | (1) |
|
3.5.4 Adsorption Properties |
|
|
81 | (1) |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
85 | (4) |
|
4 Carbon Nanotubes: Synthesis, Properties and Applications |
|
|
89 | (50) |
|
Raghunandan Sharma Poonam Benjwal |
|
|
|
|
89 | (2) |
|
4.2 Carbon Nanostructures |
|
|
91 | (6) |
|
|
92 | (5) |
|
|
97 | (2) |
|
|
99 | (4) |
|
|
100 | (1) |
|
|
100 | (1) |
|
4.4.3 Chemical Vapor Deposition |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (5) |
|
|
103 | (1) |
|
4.5.2 Scanning Electron Microscopy |
|
|
104 | (1) |
|
4.5.3 Transmission Electron Microscopy |
|
|
105 | (1) |
|
4.5.4 Atomic Force and Scanning Tunneling Microscopy |
|
|
106 | (1) |
|
|
107 | (1) |
|
4.5.6 Thermogravimetric Analysis |
|
|
108 | (1) |
|
|
108 | (4) |
|
4.6.1 Electronic Properties |
|
|
109 | (2) |
|
4.6.2 Mechanical Properties |
|
|
111 | (1) |
|
|
112 | (19) |
|
|
113 | (6) |
|
|
119 | (5) |
|
4.7.3 Wastewater Purification |
|
|
124 | (1) |
|
|
125 | (2) |
|
4.7.5 Superhydrophobicity |
|
|
127 | (1) |
|
4.7.6 Stretchable Structure |
|
|
128 | (3) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (7) |
|
5 Graphene: Synthesis, Properties and Application |
|
|
139 | (56) |
|
|
|
|
|
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (3) |
|
|
144 | (1) |
|
5.4.2 Carbon Nanotube (1D) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
5.5 Molecular Structure and Chemistry of Graphene |
|
|
147 | (1) |
|
5.6 Properties of Graphene |
|
|
147 | (6) |
|
|
147 | (2) |
|
5.6.2 Electrical Property |
|
|
149 | (1) |
|
5.6.3 Electronic Properties |
|
|
149 | (1) |
|
5.6.4 Quantum Hall Effect |
|
|
150 | (1) |
|
5.6.5 Mechanical Property |
|
|
151 | (1) |
|
5.6.6 Thermal and Thermoelectric Properties |
|
|
152 | (1) |
|
5.7 Synthesis of Graphene |
|
|
153 | (2) |
|
5.8 Biomedical Application of Graphene |
|
|
155 | (11) |
|
5.8.1 Graphene in Drug and Gene Delivery |
|
|
156 | (3) |
|
5.8.2 Graphene in Cancer Therapy |
|
|
159 | (2) |
|
5.8.3 Graphene in Bioimaging |
|
|
161 | (2) |
|
5.8.4 Graphene in Chemo- and Biosensing |
|
|
163 | (3) |
|
|
166 | (8) |
|
5.9.1 Graphene in Lithium Ion Battery |
|
|
166 | (2) |
|
5.9.2 Graphene in Fuel Cells |
|
|
168 | (2) |
|
5.9.3 Graphene in Solar Cells |
|
|
170 | (3) |
|
5.9.4 Graphene in Supercapacitor |
|
|
173 | (1) |
|
5.10 Graphene in Electronics |
|
|
174 | (3) |
|
5.11 Graphene in Catalysis |
|
|
177 | (1) |
|
|
177 | (2) |
|
5.13 Conclusion and Perspective |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (14) |
|
6 Nanoclays: Synthesis, Propeities and Applications |
|
|
195 | (20) |
|
|
|
|
195 | (1) |
|
6.2 Structure and Properties of Nanoclays |
|
|
196 | (7) |
|
6.3 Synthesis of Polymer-Clay Nanocomposites |
|
|
203 | (3) |
|
6.3.1 In-Situ Polymerization |
|
|
203 | (2) |
|
6.3.2 Solution-Induced Intercalation Method |
|
|
205 | (1) |
|
6.3.3 Melt Processing Method |
|
|
206 | (1) |
|
6.4 Applications of Nanoclays |
|
|
206 | (5) |
|
|
211 | (1) |
|
|
212 | (3) |
|
7 Applications for Nanocellulose in Polyolefins-Based Composites |
|
|
215 | (14) |
|
|
|
|
|
|
|
|
215 | (9) |
|
|
224 | (3) |
|
|
227 | (2) |
|
8 Recent Progress in Nanocomposites Based on Carbon Nanomaterials and Electronically Conducting Polymers |
|
|
229 | (30) |
|
|
|
|
230 | (1) |
|
8.2 Electronically Conducting Polymers |
|
|
230 | (3) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
233 | (2) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (1) |
|
8.5 Electronically Conducting Polymer/Fullerene Nano composites |
|
|
236 | (4) |
|
8.5.1 Polyaniline/Fullerene Nanocomposites |
|
|
237 | (2) |
|
8.5.2 Polythiophene/Fullerene Nanocomposites |
|
|
239 | (1) |
|
8.5.3 Polyacetylene/Fullerene Nanocomposites |
|
|
240 | (1) |
|
8.6 Electronically Conducting Polymer/Carbon Nanofiber Nano composites |
|
|
240 | (3) |
|
8.6.1 Polyaniline/Carbon Nanofiber Nanocomposites |
|
|
240 | (2) |
|
8.6.2 Polypyrrole/Carbon Nanofiber Nanocomposites |
|
|
242 | (1) |
|
8.6.3 Polythiophene/Carbon Nanofiber Nanocomposites |
|
|
243 | (1) |
|
8.7 Electronically Conducting Polymer/Carbon Nanotube Nanocomposites |
|
|
243 | (3) |
|
8.7.1 Polyaniline/Carbon Nanotube Nanocomposites |
|
|
243 | (2) |
|
8.7.2 Polypyrrole/Carbon Nanotube Nanocomposites |
|
|
245 | (1) |
|
8.7.3 Polythiophene/Carbon Nanotube Nanocomposites |
|
|
245 | (1) |
|
8.7.4 Polyacetylene/Carbon Nanotube Nanocomposites |
|
|
246 | (1) |
|
8.8 Electronically Conducting Polymer/Graphene Nano composites |
|
|
246 | (3) |
|
8.8.1 Polyaniline/Graphene Nanocomposites |
|
|
246 | (2) |
|
8.8.2 Polypyrrole/Graphene Nanocomposites |
|
|
248 | (1) |
|
8.8.3 Polythiophene/Graphene Nanocomposites |
|
|
249 | (1) |
|
8.8.4 Polyacetylene/Graphene Nanocomposites |
|
|
249 | (1) |
|
|
249 | (3) |
|
8.9.1 Energy Conversion Devices |
|
|
250 | (1) |
|
8.9.2 Energy Storage Devices |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
8.9.6 Electromagnetic Shielding |
|
|
252 | (1) |
|
8.9.7 Microwave Absorbers |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
253 | (6) |
Part II: Nanocomposites Based on Inorganic Nanoparticles |
|
|
9 Nanocomposites Based on Inorganic Nanoparticles |
|
|
259 | (88) |
|
|
|
|
260 | (13) |
|
|
260 | (2) |
|
9.1.2 Characteristics of Montmorillonite |
|
|
262 | (2) |
|
9.1.3 Chemical Modification of Montmorillonite |
|
|
264 | (5) |
|
9.1.4 Characterization of Modified Clays |
|
|
269 | (1) |
|
9.1.5 Inorganic Nanoparticles |
|
|
270 | (2) |
|
9.1.6 Inorganic Nanoparticle Modification |
|
|
272 | (1) |
|
9.1.7 Characterization of Modified Nanoparticles |
|
|
272 | (1) |
|
9.2 Processing of Clay-Polymer Nanocomposites (CPN) |
|
|
273 | (10) |
|
9.2.1 Solution Intercalation |
|
|
273 | (1) |
|
9.2.2 In-situ Intercalative Polymerization |
|
|
274 | (1) |
|
|
275 | (1) |
|
9.2.4 Differential Scanning Calorimetric Studies |
|
|
276 | (5) |
|
9.2.5 Rheological Properties |
|
|
281 | (2) |
|
9.3 Particulate-Polymer Nanocomposites Processing |
|
|
283 | (9) |
|
|
283 | (1) |
|
9.3.2 In-situ Formation of Nanoparticles in a Polymer Matrix |
|
|
284 | (1) |
|
9.3.3 In-situ Polymerization in the Presence of Nanoparticles |
|
|
284 | (2) |
|
9.3.4 In-situ Formation of Nanoparticles and Polymer Matrix |
|
|
286 | (1) |
|
|
286 | (3) |
|
9.3.6 Crystallization Behavior of Thermoplastic Nanocomposites |
|
|
289 | (3) |
|
9.4 Characterization of Polymer Nanocomposites |
|
|
292 | (9) |
|
9.4.1 Characterization of Clay-Polymer Nanocomposites |
|
|
292 | (6) |
|
9.4.2 Characterization of Nanoparticle-Polymer Nanocomposites |
|
|
298 | (3) |
|
9.5 Properties of Polymer Nanocomposites |
|
|
301 | (35) |
|
|
301 | (3) |
|
9.5.2 Dynamic Mechanical Analysis |
|
|
304 | (6) |
|
|
310 | (13) |
|
|
323 | (6) |
|
9.5.5 Degradation Behavior of Nanocomposites under NO. Environment |
|
|
329 | (2) |
|
9.5.6 Tribological Properties |
|
|
331 | (3) |
|
9.5.7 Water Absorption Properties |
|
|
334 | (2) |
|
9.6 Application of Nanocomposites |
|
|
336 | (6) |
|
9.6.1 Applications of Clay-Polymer Nanocomposies |
|
|
336 | (5) |
|
9.6.2 Applications of Inorganic Particle-Reinforced Composites |
|
|
341 | (1) |
|
|
342 | (5) |
|
10 Polymer Nanocomposites Reinforced with Functionalized Carbon Nanomaterials: Nanodiamonds, Carbon Nanotubes and Graphene |
|
|
347 | (56) |
|
|
|
|
|
348 | (1) |
|
10.2 Synthesis of Carbon Nanomaterials |
|
|
349 | (2) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
351 | (7) |
|
10.3.1 Nanodiamond Functionalization |
|
|
352 | (1) |
|
10.3.2 CNT Functionalization |
|
|
353 | (3) |
|
10.3.3 Graphene Functionalization |
|
|
356 | (2) |
|
10.4 Methods of Nanocomposite Preparation |
|
|
358 | (2) |
|
10.4.1 Dispersion and Orientation |
|
|
359 | (1) |
|
|
360 | (26) |
|
10.5.1 Dynamical Mechanical Properties |
|
|
362 | (8) |
|
10.5.2 Tribological Properties |
|
|
370 | (5) |
|
|
375 | (4) |
|
|
379 | (7) |
|
|
386 | (1) |
|
|
386 | (17) |
Part III: Green Nanocomposites |
|
|
11 Green Nanocomposites from Renewable Resource-Based Biodegradable Polymers and Environmentally Friendly Blends |
|
|
403 | (42) |
|
|
|
|
|
404 | (3) |
|
11.2 Organically Modified Layered Silicates Reinforced Biodegradable Nanocomposites: New Era of Polymer Composites |
|
|
407 | (18) |
|
11.2.1 Preparation and Processing of Biodegradable Polymer Nano,composites |
|
|
407 | (2) |
|
11.2.2 Organically Modified Layered Silicate Reinforced PHB Nanocomposites |
|
|
409 | (1) |
|
11.2.3 Organically Modified Layered Silicate Reinforced Thermoplastic Starch (TPS) Nanocomposites |
|
|
409 | (1) |
|
11.2.4 Organically Modified Layered Silicate Reinforced Cellulose Nanocomposites |
|
|
410 | (1) |
|
11.2.5 Organically Modified Layered Silicate Reinforced PLA Nanacomposites |
|
|
411 | (8) |
|
11.2.6 Effect of Organomodifiers Structure on the Biodegradable Polymer Nanocomposite Properties |
|
|
419 | (2) |
|
11.2.7 Biodegradation of PLA Nanocomposites |
|
|
421 | (4) |
|
11.3 Environmentally Friendly Polymer Blends from Renewable Resources |
|
|
425 | (11) |
|
11.3.1 Aliphatic Polyester Blends |
|
|
425 | (2) |
|
11.3.2 Factors Affecting Properties of Biodegradable Polymer Blends |
|
|
427 | (2) |
|
11.3.3 Miscibility and Compatibility |
|
|
429 | (5) |
|
11.3.4 Compatibilization of Biodegradable Polymers |
|
|
434 | (2) |
|
11.4 Applications and Prototype Development |
|
|
436 | (1) |
|
|
436 | (1) |
|
|
437 | (1) |
|
|
438 | (7) |
Part IV: Applications of Polymer Nanocomposites |
|
|
12 Nanocomposites for Device Applications |
|
|
445 | (38) |
|
|
|
446 | (1) |
|
12.2 Nonvolatile Memory Devices |
|
|
447 | (4) |
|
12.3 Fabrication of Nonvolatile Memory Devices Utilizing Graphene Materials Embedded in a Polymer Matrix |
|
|
451 | (1) |
|
12.4 Electric-Field-Induced Resistive Switching |
|
|
452 | (3) |
|
12.5 Nanocomposite Solar Cells |
|
|
455 | (2) |
|
12.6 Thin-Film Capacitors for Computer Chips |
|
|
457 | (1) |
|
12.7 Solid Polymer Electrolyes for Batteries |
|
|
457 | (1) |
|
12.8 Automotive Engine Parts and Fuel Tanks |
|
|
458 | (1) |
|
12.9 Oxygen and Gas Barriers |
|
|
459 | (1) |
|
12.10 Printing Technologies |
|
|
459 | (2) |
|
|
461 | (1) |
|
|
461 | (1) |
|
|
462 | (1) |
|
12.14 Low-K and Low-Loss Composites |
|
|
463 | (1) |
|
12.15 ZnO-Based Nanocomposites |
|
|
463 | (1) |
|
12.16 Functional Polymer Nanocomposites |
|
|
464 | (1) |
|
|
464 | (1) |
|
12.18 Polymer Nanocomposites |
|
|
465 | (10) |
|
12.18.1 PS/ZnO Nanocomposite Films |
|
|
466 | (6) |
|
12.18.2 PVA/ZnO Nanocomposite Films |
|
|
472 | (3) |
|
12.19 Magnetically Active Nanocomposites |
|
|
475 | (4) |
|
12.20 Nanocomposites of Nature |
|
|
479 | (1) |
|
|
479 | (4) |
|
13 Polymer Nanocomposites for Energy Storage Applications |
|
|
483 | (22) |
|
|
|
|
483 | (2) |
|
13.2 Energy Storage Mechanism in Supercapacitor and Batteries |
|
|
485 | (3) |
|
13.3 Synthesis of Conducting Polymers |
|
|
488 | (3) |
|
13.3.1 Chemical Polymerization |
|
|
488 | (1) |
|
13.3.2 Electrochemical Polymerization |
|
|
489 | (1) |
|
13.3.3 Synthesis of Conducting Polymer Nanocomposite |
|
|
490 | (1) |
|
13.4 Characterization of Nano composites: Structure, Electrical, Chemical Composition and Surface Area |
|
|
491 | (3) |
|
13.4.1 Electrochemical Characterizations |
|
|
491 | (3) |
|
13.5 Conducting Polymer Nanocomposites for Energy Storage Application |
|
|
494 | (5) |
|
13.5.1 Polypyrrole Nanocomposites |
|
|
495 | (1) |
|
13.5.2 Polythiophene Nanocomposites |
|
|
496 | (1) |
|
13.5.3 Polyaniline Nanocomposites |
|
|
497 | (2) |
|
13.6 Future of Graphene and Conducting Polymer Nancomposites |
|
|
499 | (1) |
|
13.7 Conclusions and Future Research Initiatives |
|
|
500 | (1) |
|
|
501 | (4) |
|
14 Polymer Nanocomposites for Structural Applications |
|
|
505 | (14) |
|
|
|
|
506 | (4) |
|
14.2 Nanocomposite Fibers |
|
|
510 | (2) |
|
14.3 Nano-Enhanced Conventional Composites |
|
|
512 | (1) |
|
14.4 Nano-Enhanced All-Polymer Composites |
|
|
513 | (1) |
|
14.5 Single Polymer Nanocomposites |
|
|
514 | (1) |
|
14.6 Summary, Conclusions and Future Trends |
|
|
515 | (2) |
|
|
517 | (2) |
|
15 Nanocomposites in Food Packaging |
|
|
519 | (54) |
|
|
|
519 | (4) |
|
15.2 Nanoreinforcements in Food Packaging Materials |
|
|
523 | (15) |
|
15.2.1 Layered Silicate Nanoreinforcements |
|
|
523 | (5) |
|
15.2.2 Cellulose Nanoreinforcements |
|
|
528 | (8) |
|
15.2.3 Other Nanoreinforcements |
|
|
536 | (2) |
|
15.3 Polymer Matrix for Nanocomposite |
|
|
538 | (3) |
|
15.3.1 Starch and Its Derivates |
|
|
539 | (1) |
|
15.3.2 Polylactic Acid (PLA) |
|
|
539 | (1) |
|
15.3.3 Polyhydroxybutyrate (PHB) |
|
|
540 | (1) |
|
15.3.4 Polycaprolactone (PLC) |
|
|
541 | (1) |
|
15.4 Recent Trends in Packaging Developed by Application of Nanocomposites |
|
|
541 | (10) |
|
15.4.1 Nanocomposite-based Edible Food Packaging |
|
|
541 | (2) |
|
15.4.2 Role of Nanocomposites in Active Food Packaging |
|
|
543 | (1) |
|
15.4.3 Antimicrobial Systems |
|
|
544 | (5) |
|
|
549 | (1) |
|
15.4.5 Enzyme Immobilization Systems |
|
|
550 | (1) |
|
15.5 Application of Nanocomposites as Nanosensor for Smart/Intelligent Packaging |
|
|
551 | (5) |
|
15.5.1 Detection of Small Organic Molecules |
|
|
551 | (2) |
|
15.5.2 Detection of Gases |
|
|
553 | (1) |
|
15.5.3 Detection of Microorganisms |
|
|
554 | (1) |
|
15.5.4 Time-Temperature Integrators |
|
|
555 | (1) |
|
|
556 | (1) |
|
|
557 | (16) |
Index |
|
573 | |