Muutke küpsiste eelistusi

E-raamat: Polymeric Sensors and Actuators

(University of Leoben, Austria)
  • Formaat - EPUB+DRM
  • Hind: 228,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book exhaustively covers the various polymers that are used for sensors and actuators from the perspective of organic chemistry.

The field of polymeric sensors and actuators is developing very rapidly as newly derived polymer materials are suitable for sensor technology. This book uniquely and comprehensively covers the various polymers that are used for sensors and actuators. The author has researched both scientific papers and patents to include all the recent discoveries and applications. Since many chemists may not be very familiar with the physical background as well as how sensors operate, Polymeric Sensors and Actuators includes a general chapter dealing with the overall physics and basic principles of sensors. Complementary chapters on their methods of fabrication as well as the processing of data are included. The actuators sections examine the fields of applications, special designs, and materials. The final chapter is dedicated to liquid crystal displays. The book concludes with four extensive indices including one special one on analytes to allow the practitioner to easily use the text.

This comprehensive text examines the following sensor types:





Humidity Sensors Biosensors Mechanical Sensors Optical Sensors Surface Plasmon Resonance Test Strips Microelectromechanical (MEMS) Sensors Piezoelectric Sensors Acoustic Wave Sensors Electronic Nose Switchable Polymers

Arvustused

It is certainly a way to learn about the vast array of materials and sensing techniques possible today.  (IEEE Electrical Insulation Magazine, 1 March 2014)

 

Preface xvii
Part I Basics of Sensors
1(76)
1 Sensor Types and Polymers
3(40)
1.1 Sensor Types
4(17)
1.1.1 Optical Sensors
4(1)
1.1.2 Acoustic Wave Sensors
4(9)
1.1.3 Electronic Noses
13(3)
1.1.4 Ion Selective Electrodes
16(1)
1.1.5 Tunneling Sensors
16(1)
1.1.6 Potentiostats
17(1)
1.1.7 Microelectromechanical Systems
18(1)
1.1.8 Multidimensional Sensing Devices
19(2)
1.2 Basic Polymer Types
21(22)
1.2.1 Conjugated Polymers
22(2)
1.2.2 Conducting Polymers
24(3)
1.2.3 Electrostrictive Polymers
27(1)
1.2.4 Electrochromic Polymers
28(1)
1.2.5 Nanomaterials
29(6)
References
35(8)
2 Methods of Fabrication
43(24)
2.1 Patterning Techniques
43(1)
2.2 Coating Techniques
43(5)
2.2.1 Dip Coating
43(2)
2.2.2 Spin Coating
45(1)
2.2.3 Spray Coating
46(1)
2.2.4 Drop Coating
46(1)
2.2.5 Electrospray
46(1)
2.2.6 Rapid Expansion of Supercritical Solutions
47(1)
2.3 Electrospinning
48(2)
2.4 Molecular Imprinted Polymers
50(2)
2.4.1 Influence of Cross Linking Agents
50(2)
2.5 Sensor Arrays
52(7)
2.5.1 Conducting Polymer Compositions
54(2)
2.5.2 Surface Imprinting
56(2)
2.5.3 Molecular Imprinted Sensor Arrays
58(1)
2.6 Ink Jet Fabrication
59(8)
2.6.1 Inkjet Printed Chemical Sensor Array
60(2)
References
62(5)
3 Processing of Data
67(10)
3.1 Evaluation of Multivariate Data
67(1)
3.2 Response of a Sensor Array
68(1)
3.3 Least Square Method
69(1)
3.4 Linear Solvation Energy Relationships
70(1)
3.5 Euclidian Fuzzy Similarity
71(1)
3.6 Adaptive Resonance Theory
71(1)
3.7 Modelling of Sensors
72(2)
3.8 Bioinspired Models for Pattern Recognition
74(3)
References
74(3)
Part II Sensors by Type
77(338)
4 Humidity Sensors
79(24)
4.1 Calibration
80(1)
4.2 Capacitive Humidity Sensors
80(3)
4.3 Resistance Type Humidity Sensors
83(6)
4.3.1 Impedance
84(1)
4.3.2 Polymeric Materials
85(4)
4.4 Bragg Grating Sensor
89(5)
4.4.1 Phase Mask Technique
90(2)
4.4.2 Poly(ethylene oxide)
92(2)
4.5 Fiber Optic Sensor
94(1)
4.5.1 Superabsorbent Polymer
94(1)
4.5.2 Nanowire
94(1)
4.6 Surface AcousticWave-based Sensors
94(4)
4.7 Microwave Oven Humidity Sensors
98(5)
References
99(4)
5 Biosensors
103(28)
5.1 Waveguide Sensors
104(2)
5.2 Active Elements
106(3)
5.3 Special Examples
109(22)
5.3.1 Glucose Sensors
109(3)
5.3.2 Implantable Sensors
112(4)
5.3.3 Rapid Point-of-Care Diagnostics
116(1)
5.3.4 Biogenic Amines
117(2)
5.3.5 Sensors for Peptides, Proteins, and Enzymes
119(4)
5.3.6 Metastatic Cells
123(1)
References
124(7)
6 Mechanical Sensors
131(8)
6.1 Basic Principles
131(3)
6.1.1 Bending Sensors
131(1)
6.1.2 Cantilever Type Sensors
132(1)
6.1.3 Micromechanical Oscillators
132(1)
6.1.4 Microelectromechanical Capacitor Array
133(1)
6.1.5 Change in Thermodynamic Properties
133(1)
6.1.6 Dielectric Elastomer Sensors
134(1)
6.2 Polymers for Mechanical Sensors
134(3)
6.2.1 Microbalance for Bisphenol A
134(1)
6.2.2 Polymer-derived Ceramics
135(1)
6.2.3 Poly(dimethylsiloxane)
136(1)
6.3 Cardiac Infarction Monitoring
137(2)
References
137(2)
7 Optical Sensors
139(86)
7.1 Conjugated Polymers
139(6)
7.1.1 Photophysics
140(1)
7.1.2 Self-assembled π-Conjugated Systems
141(1)
7.1.3 Poly(diacetylene)s
142(2)
7.1.4 Water-Soluble Conjugated Polymers
144(1)
7.1.5 Poly(thiophene)s
144(1)
7.1.6 Cyclophanes
144(1)
7.1.7 Water-Soluble Conjugated Polymers
145(1)
7.2 Amplified Fluorescent Polymers
145(15)
7.2.1 Side Chains on Polymers
147(7)
7.2.2 Direct Functionalization of Polymers
154(2)
7.2.3 Analytes
156(2)
7.2.4 Hybrid Sensors
158(2)
7.3 Nanostructured Materials
160(3)
7.3.1 Porous Silica
160(1)
7.3.2 Nanoparticles
160(3)
7.4 Micelle-Induced Fluorescent Sensors
163(2)
7.5 Fiber Sensors
165(3)
7.5.1 Refractive Index Fiber Sensors
166(1)
7.5.2 Temperature Fiber Sensors
167(1)
7.6 Waveguides
168(1)
7.7 Chiral Sensors
168(2)
7.8 Molecularly Imprinted Polymers
170(4)
7.8.1 Synthesis
170(2)
7.8.2 Mycotoxins
172(1)
7.8.3 Coumarin Monomers
172(2)
7.9 Glucose Sensors
174(6)
7.9.1 Receptors for Glucose Sensors
174(2)
7.9.2 Phenylboronic acid-based Sensors
176(1)
7.9.3 Noninvasive Sensor
177(3)
7.10 Hydrophilic Polymer Matrices
180(1)
7.11 Special Analytes
181(26)
7.11.1 Explosives
181(10)
7.11.2 Cation Sensing
191(11)
7.11.3 Hydrogen Gas
202(1)
7.11.4 Fluoride Ions
202(2)
7.11.5 Amines
204(1)
7.11.6 Cyclodextrin
205(1)
7.11.7 Thiols
206(1)
7.12 pH Sensors
207(18)
7.12.1 Gold Nanoparticles
207(3)
References
210(15)
8 Surface Plasmon Resonance
225(16)
8.1 Application as Sensors
225(1)
8.2 Basic Principle
226(1)
8.3 Theory
226(3)
8.4 Waveguide Surface Plasmon Resonance
229(1)
8.5 Nanoparticles
230(4)
8.5.1 Gold Nanoparticles
230(1)
8.5.2 Molecular Imprinted Nanoparticles
231(2)
8.5.3 Gold Nanorods
233(1)
8.6 Surface Plasmon Resonance with Fibers
234(1)
8.7 Combinations with other Principles
235(1)
8.8 Examples for Use
235(6)
8.8.1 Biosensors
235(1)
8.8.2 Amino Biotin
236(1)
References
237(4)
9 Test Strips
241(28)
9.1 Cations
241(2)
9.1.1 Mercury
241(1)
9.1.2 Gallium
242(1)
9.1.3 Others
243(1)
9.2 Anions
243(3)
9.2.1 Fluoride
243(1)
9.2.2 Cyanide
244(1)
9.2.3 Pyrophosphate
244(2)
9.3 Organic Analytes
246(8)
9.3.1 Peroxide Test Strip
246(2)
9.3.2 Benzoic acid
248(1)
9.3.3 Aldehydes and Ketones
249(1)
9.3.4 β-Hydroxybutyrate
250(1)
9.3.5 Lactose
251(1)
9.3.6 Glucose
252(1)
9.3.7 Glutamate
253(1)
9.4 Immunochromatographic Tests
254(6)
9.4.1 Human Serum Albumin
256(1)
9.4.2 Granulysin
256(1)
9.4.3 Organophosphorus Insecticides
256(1)
9.4.4 Shellfish Poisoning Toxins
257(1)
9.4.5 Ricin
258(1)
9.4.6 Fumonisins
259(1)
9.4.7 Ochratoxin A
259(1)
9.5 Bacteria
260(9)
References
262(7)
10 Electrochemical Sensors
269(48)
10.1 Basic Principles
269(7)
10.1.1 Basic Requirements
270(1)
10.1.2 Gas Sensors
271(1)
10.1.3 Redox Sensors
271(1)
10.1.4 Carbon Nanotubes
272(1)
10.1.5 Electrically Conductive Polymers
273(3)
10.2 Carbon Nanotube Field-effect Transistors
276(1)
10.3 Chemical Resistors
277(5)
10.3.1 Methanol
278(1)
10.3.2 Thin Film Sensors
278(1)
10.3.3 Gas Sensors
279(1)
10.3.4 Ammonia
279(2)
10.3.5 Ripeness of Bananas
281(1)
10.4 Temperature Sensors
282(3)
10.4.1 Pyroelectric Sensors
282(1)
10.4.2 Fiber Bragg Grating Sensor
283(1)
10.4.3 High-temperature Heat Flux Sensors
284(1)
10.4.4 Medical Applications
285(1)
10.5 Smart Textiles
285(2)
10.5.1 Flexible Temperature Sensors on Fibers
286(1)
10.6 Molecularly Imprinted Polymers
287(11)
10.6.1 Mercury Ions
288(2)
10.6.2 Atrazine
290(1)
10.6.3 Creatine
291(1)
10.6.4 4-Aminophenol
292(1)
10.6.5 Melamine in Milk
293(1)
10.6.6 Oxytetracycline
293(1)
10.6.7 Catechol
294(1)
10.6.8 Insecticides
294(1)
10.6.9 Imipramine and Clomipramine
295(1)
10.6.10 Benzyladenine
296(1)
10.6.11 Histidine
296(2)
10.6.12 Insulin
298(1)
10.7 Other Analytes
298(19)
10.7.1 Insect Infestation of Pine Trees
298(1)
10.7.2 Nitrogen Dioxide
299(1)
10.7.3 Ionizing Radiation
299(1)
10.7.4 Subcutaneous Glucose Electrode
300(1)
10.7.5 Phenol Derivatives
301(1)
10.7.6 Diaminocarbazoles
302(3)
10.7.7 Catecholamines
305(1)
10.7.8 Chlorpromazine
306(1)
References
307(10)
11 Piezoelectric Sensors
317(14)
11.1 Theoretical Aspects
317(1)
11.1.1 Piezoelectric Electromechanical Equation
317(1)
11.1.2 Sauerbrey Equation
317(1)
11.2 Automotive Applications
318(1)
11.3 Paint Sensors
319(1)
11.4 Molecular Imprinted Polymers
320(2)
11.4.1 Piezoelectric Micromembranes
320(1)
11.4.2 Glutathione
321(1)
11.4.3 Explosives
321(1)
11.5 Food Safety Applications
322(2)
11.5.1 Vanillin
322(2)
11.6 Gases
324(1)
11.6.1 Ozone and Nitrogen oxide
324(1)
11.6.2 Air Flow Sensor
324(1)
11.7 Tactile Sensors
325(6)
References
327(4)
12 AcousticWave Sensors
331(12)
12.1 Analytes
331(12)
12.1.1 Hydrogen, Nitrogen dioxide
331(2)
12.1.2 Organic Vapors
333(3)
12.1.3 Liquids
336(3)
References
339(4)
13 Electronic Nose
343(26)
13.1 Methods for Validation
343(6)
13.1.1 The Human Nose
343(1)
13.1.2 The Electronic Nose
344(1)
13.1.3 Sensor Arrays
345(4)
13.1.4 Remote Analysis
349(1)
13.2 Medical Applications
349(5)
13.2.1 Breath Analysis
350(1)
13.2.2 Intrapulmonary Infections
351(1)
13.2.3 Virus Detection
352(1)
13.2.4 Drug Compliance Monitoring
353(1)
13.3 Fire Detectors
354(2)
13.4 Pipeline Inspection
356(1)
13.5 Sensing Arrays with Colloidal Particles
357(1)
13.6 Nanodisk Sensor Arrays
358(2)
13.7 Food Testing
360(5)
13.7.1 Cork Wine Bottle Stoppers
362(2)
13.7.2 Streptomyces in Potable Water
364(1)
13.7.3 Insecticides
364(1)
13.8 Soil Volatile Fingerprints
365(4)
References
365(4)
14 Switchable Polymers
369(46)
14.1 Shape-memory Polymers
370(1)
14.2 Chemical Switches
371(13)
14.2.1 Chromogenic Switch for Fluoride
371(1)
14.2.2 Glucose Sensing Switch
372(2)
14.2.3 DNA Analysis
374(3)
14.2.4 Ion Responsive Molecular AND Gate
377(1)
14.2.5 Chiroptical Switches
377(2)
14.2.6 Switchable Membranes
379(1)
14.2.7 Imprinted Polymers
379(1)
14.2.8 Poly(diacetylene)
380(1)
14.2.9 Aptamers
381(3)
14.3 pH Sensitive Switches
384(6)
14.3.1 Hemoglobin Electrode
384(1)
14.3.2 Ferrocenedicarboxylic acid Electrode
385(1)
14.3.3 Bis(iron(III)porphyrin)
386(2)
14.3.4 Tropone Containing Poly(thiophene)
388(2)
14.3.5 Artificial Muscle
390(1)
14.4 Photo-responsive Switches
390(3)
14.4.1 Transparent Optical Switch
390(2)
14.4.2 Spiropyrans
392(1)
14.5 Molecular Gates
393(1)
14.5.1 Enzymes as Input Signals
393(1)
14.6 Thermosensitive Switches
394(4)
14.6.1 Thermosensitive Valve
394(1)
14.6.2 Microfluidic Device
395(1)
14.6.3 Thermofluorescence Memories
396(2)
14.6.4 Hydrophobic switching of Methylcellulose
398(1)
14.7 Electric and Magnetic Switches
398(2)
14.7.1 Switchable Anion-Cation Exchanger
398(1)
14.7.2 Magneto-Responsive Actuators
399(1)
14.7.3 Artificial Muscles
399(1)
14.8 SwitchableWettability
400(2)
14.8.1 Poly(aniline)
400(1)
14.8.2 Chirality-TriggeredWettability
401(1)
14.9 Multiple Responsive Switches
402(2)
14.10 Environmental Uses
404(11)
References
404(11)
Part III Actuators
415(74)
15 Actuators
417(52)
15.1 Mathematical Model
419(2)
15.2 Fields of Application and Special Designs
421(7)
15.2.1 Electroactive Polymers
422(3)
15.2.2 Membrane Actuators
425(1)
15.2.3 Light Weight Actuators
425(1)
15.2.4 Microelectromechanical Systems
426(2)
15.2.5 Biaxial Bending
428(1)
15.3 Materials
428(22)
15.3.1 Rotaxanes
428(2)
15.3.2 Poly(methyl methacrylate)
430(1)
15.3.3 Dendritic Poly(styrene sulfonate)
430(1)
15.3.4 Fluoropolymers
430(2)
15.3.5 Poly(pyrrole)
432(1)
15.3.6 Poly(phosphazene)s
433(1)
15.3.7 Poly(thiophene)s
434(3)
15.3.8 Poly(ether imide)
437(1)
15.3.9 Sulfonated Poly(ether ether ketone)
437(2)
15.3.10 Poly(amic acid)
439(1)
15.3.11 Ionic Polymer Metal Composites
439(3)
15.3.12 Crosslinked Poly(vinylidene fluoride)
442(1)
15.3.13 Stimuli-responsive Polymer
443(1)
15.3.14 Silicone and Acrylate Elastomers
444(1)
15.3.15 Other Electrically Conductive Polymers
445(1)
15.3.16 Ionic Compounds
446(4)
15.4 Carbon-based Conductive Materials
450(4)
15.4.1 Graphene
450(1)
15.4.2 Carbon Nanotubes and Nanohorns
450(1)
15.4.3 Metal Nanoparticle-Polymer Composites
451(2)
15.4.4 Metal Salts in CNT Devices
453(1)
15.5 Medical Applications
454(3)
15.5.1 Blood Pressure Sensor
454(1)
15.5.2 Medical Balloons
455(1)
15.5.3 Biomedical Application
456(1)
15.5.4 Hybrid Bio-derived Conducting Polymer Actuator
456(1)
15.5.5 Controlled Release of Rhodamine B
456(1)
15.6 Optical Applications
457(2)
15.6.1 Variable-focal Lens
457(1)
15.6.2 Variable Mirrors
458(1)
15.6.3 Lens Positioning System
458(1)
15.7 Pumping Applications
459(10)
15.7.1 Micropump
459(1)
15.7.2 Electroosmotic Pump
459(1)
15.7.3 Microfluidic Pump for Electrophoresis
459(1)
References
460(9)
16 Liquid Crystal Displays
469(20)
16.1 Basic Design
469(4)
16.1.1 Orientation Modes
471(2)
16.1.2 Chirality Switching
473(1)
16.2 Polymers
473(6)
16.2.1 Polymer-dispersed Liquid Crystals
473(3)
16.2.2 Blue Phase Liquid Crystals
476(1)
16.2.3 Nanoparticles
477(2)
16.3 Special Display Types
479(2)
16.3.1 Light Waveguide Display
479(1)
16.3.2 Ferroelectric Liquid Crystal Displays
480(1)
16.3.3 Three-dimensional Devices
480(1)
16.4 Viewing Helps
481(8)
16.4.1 Color Filters
481(2)
16.4.2 Compensators for Viewing Angles
483(1)
16.4.3 Viewing through Sunglasses
484(1)
References
485(4)
Index 489(1)
Acronyms 489(3)
Chemicals 492(10)
Analytes 502(3)
General Index 505
Johannes Karl Fink is a professor of macromolecular chemistry at Montanuniversität, Loeben, Austria. His industry and academic career spans more than thirty years in the fields of polymers, and his research interests include characterization, flame retardancy, thermodynamics and degradation of polymers, pyrolysis, and adhesives. Professor Fink has published several books on physical chemistry and polymer science including A Concise Introduction to Additives for Thermoplastic Polymers (Wiley/Scrivener) and Handbook of Engineering and Specialty Thermoplastics (Wiley/Scrivener).