Muutke küpsiste eelistusi

E-raamat: Polymerized Ionic Liquids

Edited by
  • Formaat: 541 pages
  • Sari: Smart Materials Series Volume 30
  • Ilmumisaeg: 18-Sep-2017
  • Kirjastus: Royal Society of Chemistry
  • Keel: eng
  • ISBN-13: 9781788010535
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 991,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 541 pages
  • Sari: Smart Materials Series Volume 30
  • Ilmumisaeg: 18-Sep-2017
  • Kirjastus: Royal Society of Chemistry
  • Keel: eng
  • ISBN-13: 9781788010535
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Ionic liquids provide ion-rich media, which can control the system properties based on the size, charge, and shape of the ions. Owing to the versatility in their architecture, they can offer rare opportunities for designing smart materials which respond to external signals for specific applications. Polymerizing the ionic liquids can subtly arrange these mobile ions to control the material response. This is the basis of novel smart materials fabricated utilizing ionic liquids and particularly their corresponding ionic polymers.

The two-volume set Smart Ionic Liquids provides the first overview of the applications of ionic liquids and their ionic polymers for the fabrication of smart devices. Volume one focusses on polymerized ionic liquids with the book introducing the polymerization of ionic liquids followed by individual chapters on different types of polymerized ionic liquids including nanoporous, cationic and anionic.  Subsequent chapters then explore different material systems such as stimuli responsive smart fluids, thermoresponsive poly(ionic liquid)s and smart polymeric hydrogels. Volume two focusses on ionic liquid devices including characterisation techniques and their different applications as sensors, actuators, organic electronic devices, energy storage and nanocarriers for drug delivery.

Written by leading researchers, the book provides a comprehensive resource aimed at researchers and students in materials science, polymer science, chemistry and physics interested in the materials and their applications.



A two-volume set providing a comprehensive overview of the applications of ionic liquids as smart materials.
Chapter 1 Polymerization in Ionic Liquids
1(22)
Nikhil K. Singha
Kunlun Hong
Jimmy W. Mays
1.1 Introduction
1(1)
1.2 ILs in Conventional Free Radical Polymerization
2(4)
1.3 ILs in Controlled Free Radical Polymerizations
6(3)
1.4 ILs in Ionic Polymerizations and Group Transfer Polymerizations
9(1)
1.5 Ring Opening Polymerization
10(1)
1.6 Transition Metal-catalyzed Polymerizations
11(1)
1.7 Electrochemical Polymerization
12(1)
1.8 Step-growth Polymerization
12(1)
1.9 Enzymatic Polymerization
12(1)
1.10 ILs as Solvents for Grafting from Biopolymers
13(1)
1.11 Other Applications of ILs in Polymerization
13(1)
1.12 Conclusions and Future Prospects
14(9)
Acknowledgements
15(1)
References
15(8)
Chapter 2 Porous Ionic Liquid Materials
23(60)
Alessandro Dani
Valentina Crocella
Giulio Latini
Silvia Bordiga
2.1 Introduction
23(5)
2.1.1 General Definition of Porosity
24(4)
2.2 Porosity and Ionic Liquids
28(55)
2.2.1 Porous Poly(Ionic Liquid)s
30(21)
2.2.2 Supported Porous Ionic Liquids
51(12)
2.2.3 Hybrid Porous IL Materials
63(14)
2.2.4 Supramolecular Ionic Liquids
77(1)
References
77(6)
Chapter 3 Cationic and Anionic Polymerized Ionic Liquids: Properties for Applications
83(34)
Olga Kuzmina
3.1 Introduction
83(1)
3.2 Comparison of the Properties of Cationic vs. Anionic PILs
84(25)
3.2.1 Electroconductivity
84(11)
3.2.2 CO2 Sorption
95(8)
3.2.3 Sensors
103(2)
3.2.4 Thermoresponsive Materials
105(4)
3.3 Summary and Future Directions of Research
109(8)
References
109(8)
Chapter 4 Switchable Hydrophobicity and Hydrophilicity
117(26)
Yuki Kohno
Hiroyuki Ohno
4.1 Introduction
117(1)
4.2 Ionic Liquids with Switchable Hydrophobicity and Hydrophilicity Depending on the Temperature
118(7)
4.3 Thermoresponsive Poly(ionic liquid)s with Switchable Hydrophobicity/Hydrophilicity
125(9)
4.4 Potential Applications of Thermoresponsive Ionic Liquid-based Materials
134(5)
4.5 Conclusion
139(4)
Acknowledgements
140(1)
References
140(3)
Chapter 5 Switchable Polarity Liquids
143(37)
S. G. Khokarale
I. Anugwom
P. Maki-Arvela
P. Virtanen
J.-P. Mikkola
5.1 Introduction
143(2)
5.2 Preparation and Characterization
145(17)
5.2.1 Two-component Switchable Polarity Solvent/Ionic Liquids for CO2/SO2 Capture
145(1)
5.2.2 Switchable Ionic Liquids from DBU Alcohols and CO2
146(1)
5.2.3 Switchable Ionic Liquids from TMG Alcohols and CO2
147(2)
5.2.4 CO2 Release and Recyclability of SPSs
149(4)
5.2.5 DBU Bicarbonate
153(2)
5.2.6 One-component Switchable Polarity Solvents/Ionic Liquids for CO2 Capture
155(6)
5.2.7 Regeneration of Silylamines from ILs
161(1)
5.2.8 Recyclability of Silylamine SPSs/ILs
161(1)
5.3 Applications
162(14)
5.3.1 CO2 Capture with Switchable Ionic Liquids
162(4)
5.3.2 Fractionation of Alga with Switchable Ionic Liquids
166(1)
5.3.3 Wood Fractionation
167(7)
5.3.4 Switchable Ionic Liquids as Reaction and Separation Media
174(2)
5.4 Conclusions
176(4)
Acknowledgements
176(1)
References
176(4)
Chapter 6 Stimuli Responsive Smart Fluids Based on Ionic Liquids and Poly(ionic liquid)s
180(22)
Jianbo Yin
Qi Lei
Yuezhen Dong
Xiaopeng Zhao
6.1 Introduction
180(2)
6.2 Electro/magneto-responsive Smart Fluids
182(2)
6.3 Electro-responsive Electrorheological Fluids
184(14)
6.3.1 Electrorheological Fluids Based on Ionic Liquids
187(4)
6.3.2 Electrorheological Fluids Based on Poly(ionic liquid)s
191(7)
6.4 Summary
198(4)
Acknowledgements
199(1)
References
199(3)
Chapter 7 Thermo-responsive Poly(ionic liquid) Nanogels Prepared via One-step Cross-linking Copolymerization
202(23)
J. R. Yu
Y. Zuo
Y. B. Xiong
7.1 Introduction
202(2)
7.2 Thermo-responsive Systems Comprising ILs
204(2)
7.3 Thermo-responsive PIL Nanogels Prepared via One-step Cross-linking Copolymerization
206(16)
7.4 Summary and Outlook
222(3)
References
222(3)
Chapter 8 Redox-active Immobilized Ionic Liquids and Polymer Ionic Liquids
225(37)
Thuan-Nguyen Pham-Truong
Jalal Ghilane
Hyacinthe Randriamahazaka
8.1 Introduction
225(1)
8.2 Electrochemistry in Ionic Liquids
226(2)
8.2.1 Electrodeposition of Metals, Metal Alloys and Semiconductors
226(1)
8.2.2 Electropolymerization of Conducting Polymers
227(1)
8.3 Redox-active Ionic Liquid
228(2)
8.4 Immobilization of Ionic Liquids and Redox-active Ionic Liquids
230(8)
8.4.1 Introduction
230(1)
8.4.2 Approaches to form Thin Layers of Ionic Liquids
231(7)
8.5 Approaches for Polymer Ionic Liquids
238(5)
8.5.1 Synthetic Route and Structure of PILs
238(3)
8.5.2 Physicochemical Properties
241(2)
8.6 Applications of Poly(ionic liquid)s
243(12)
8.6.1 Nanostructuration
243(2)
8.6.2 Switchable Devices
245(2)
8.6.3 Energy Applications
247(5)
8.6.4 Sensors
252(3)
8.7 Concluding Remarks
255(7)
References
256(6)
Chapter 9 Doping Polymers with Ionic Liquids to Manipulate Their Morphology and Membrane Gas Separation Properties
262(18)
Xianda Hou
Junyi Liu
Hien Nguyen
Haiqing Lin
9.1 Introduction
262(2)
9.2 Background
264(1)
9.3 Effect of IL Doping on the Tg of Blends
265(2)
9.3.1 Tg Depression and Modeling Using the Gordon-Taylor Equation
265(1)
9.3.2 Estimation of the Tg for ILs
266(1)
9.4 Effect of IL Doping on Polymer Crystallization
267(3)
9.4.1 Effect of IL Doping on Tm Depression
267(1)
9.4.2 Effect of IL Doping on Polymer Crystallinity
268(1)
9.4.3 Effect of ILs Doping on Dissolution of Cellulose Acetate
268(2)
9.5 Effect of IL Doping on Gas Permeation Properties
270(5)
9.5.1 Gas Solubility in ILs
270(1)
9.5.2 Effect of IL Doping on Gas Solubility in Polymer/IL Blends
271(1)
9.5.3 Effect of IL Doping on Gas Diffusivity in Polymer/IL Blends
272(2)
9.5.4 Effect of IL Doping on Gas Separation Properties
274(1)
9.6 Conclusion
275(5)
Acknowledgements and Disclaimer
276(1)
References
276(4)
Chapter 10 Ionic Liquid-modified Poly(Vinylidene Fluoride): from High Performance Anti-static Materials to Flexible Dielectric Materials
280(24)
C. Y. Xing
Y.J. Li
10.1 Introduction
280(1)
10.2 Anti-static PVDF/IL Composites
281(7)
10.2.1 Anti-static Miscible PVDF/IL Films
281(3)
10.2.2 Anti-static PVDF/IL Nanofibrous Films
284(2)
10.2.3 Anti-static PVDF/IL-CNT Nanocomposites
286(2)
10.3 Dielectric PVDF/IL Composites
288(12)
10.3.1 Formation of PVDF-g-IL Films
288(2)
10.3.2 Dielectric PVDF/IL Nanostructured Composites
290(1)
10.3.3 Block-like Copolymers of PVDF-IL Chains and Their Microphase Separation Behaviours
291(5)
10.3.4 Dielectric PVDF/IL-CB Nanocomposites
296(4)
10.4 Conclusion and Outlook
300(4)
References
300(4)
Chapter 11 Ionic Liquids as Tools in the Production of Smart Polymeric Hydrogels
304(15)
S. S. Silva
R. L. Reis
11.1 Introduction
304(1)
11.2 Polymeric Hydrogels Using Ionic Liquids
305(6)
11.2.1 Agarose
306(1)
11.2.2 Cellulose
307(1)
11.2.3 Chitin and Chitosan
308(2)
11.2.4 Silk Fibroin
310(1)
11.2.5 Xanthan Gum
311(1)
11.3 Smart Polymeric Hydrogels
311(3)
11.4 Conclusions
314(5)
List of Abbreviations
315(1)
Acknowledgements
315(1)
References
315(4)
Chapter 12 Preparation of Functional Polysaccharides and Related Materials Combined with Ionic Liquids
319(23)
J. Kadokawa
12.1 Introduction
319(2)
12.2 Polysaccharide Ion Gels
321(11)
12.2.1 Ion Gels of Abundant Polysaccharides with Ionic Liquids
321(6)
12.2.2 Ion Gels of Hydrocolloid Polysaccharides with Ionic Liquids
327(5)
12.3 Polysaccharide-Polymeric Ionic Liquid Composite Materials
332(6)
12.3.1 Polymeric Ionic Liquids
332(2)
12.3.2 Preparation of Polysaccharide Films Reinforced by Polymeric Ionic Liquids
334(1)
12.3.3 Preparation of Polysaccharide-Polymeric Ionic Liquid Composites
335(3)
12.4 Conclusion
338(4)
Acknowledgements
338(1)
References
339(3)
Chapter 13 Tailoring Transport Properties Aiming for Versatile Ionic Liquids and Poly(Ionic Liquids) for Electrochromic and Gas Capture Applications
342(39)
Roberto M. Torresi
Cintia M. Correa
Tania M. Benedetti
Vitor L. Martins
13.1 Introduction
342(4)
13.2 Physicochemical Properties of ILs and PILs and the Effect on Transport
346(11)
13.2.1 Density of ILs
347(1)
13.2.2 Transport Properties of ILs and PILs
348(9)
13.3 Ionic Liquids, Polymeric Ionic Liquids and Electrochromism
357(6)
13.4 Transport of Gases by Ionic Liquids and Poly(ionic liquid)s: CO2 Separation
363(9)
13.4.1 Why Can Ionic Liquids Selectively Dissolve CO2?
364(1)
13.4.2 Factors Affecting CO2 Solubility in Ionic Liquids
365(3)
13.4.3 Supported Ionic Liquids for CO2 Separation
368(4)
13.5 Concluding Remarks
372(9)
Acknowledgements
373(1)
References
373(8)
Chapter 14 Wearable Energy Storage Based on Ionic Liquid Gels
381(35)
Stephanie F. Zopf
Anthony J. D'Angelo
Huan Qin
Matthew J. Panzer
14.1 Introduction
381(3)
14.1.1 Wearable Technology
381(1)
14.1.2 Energy Storage for Wearable Applications
382(2)
14.2 Ionic Liquid Gels for Energy Storage
384(11)
14.2.1 Ionic Liquid Gels Overview
384(5)
14.2.2 Ionic Liquid Gel Electrolytes for Battery Applications
389(5)
14.2.3 Ionic Liquid Gel Electrolytes for Supercapacitors
394(1)
14.3 Fabrication Techniques for Ionic Liquid Gel Integration into Wearable Systems
395(13)
14.3.1 Device Assembly Techniques
395(9)
14.3.2 Considerations for Integrating Ionic Liquid Gel-based Energy Storage into Wearable Systems
404(4)
14.4 Conclusions
408(8)
References
410(6)
Chapter 15 Ionic Liquids in Wearable Chemical Sensors
416(40)
S. A. Goodchild
M. R. Sambrook
A. J. S. McIntosh
15.1 Introduction
416(1)
15.2 Sensing with Wearable Technologies
417(1)
15.3 The Benefits of Ionic Liquids for Use in Wearable Chemical Sensors
418(1)
15.4 Exploiting the Selective Solvation of Ionic Liquids in Sensor Systems
419(8)
15.4.1 Towards Selective Sampling Using Ionic Liquid Solvents
420(3)
15.4.2 Improved Selectivity and Specificity of Sensing Strategies Achieved Using Ionic Liquids
423(4)
15.5 Progression of Ionic Liquid Sensors Towards Viable Wearable Sensor Options
427(19)
15.5.1 Optical Systems
428(2)
15.5.2 Electrochemical Sensors
430(8)
15.5.3 Skin-worn Chemical Sensors
438(5)
15.5.4 In situ Environmental Detection Using Paper-based Sensors
443(3)
15.5.5 Environmental Detection of Vapours
446(1)
15.6 Prospects for the Future of Ionic Liquids in Smart Chemical Sensors
446(10)
References
448(8)
Chapter 16 Ionic Electrochemical Actuators
456(33)
A. Maziz
A. Simaite
C. Bergaud
16.1 Introduction
456(5)
16.1.1 Ionic Gels
457(1)
16.1.2 Ionic Polymer-Metal Composites
458(2)
16.1.3 Carbon Nanotubes
460(1)
16.1.4 Conducting Polymers
461(1)
16.2 Volume Change in Ionic Conducting Polymers
461(1)
16.3 Synthesis of Conducting Polymers
462(3)
16.4 Ionic Electromechanical Actuators Based on Conducting Polymers
465(9)
16.4.1 Actuators Immersed in an Electrolyte: Linear Deformation
466(2)
16.4.2 Bilayer Bending Actuators
468(1)
16.4.3 Trilayer Bending Actuators: Use of Ionic Liquids as Electrolytes for Air Working Actuators
468(5)
16.4.4 Creeping Effects
473(1)
16.5 Interfacing and Actuation
474(1)
16.6 Applications
475(4)
16.7 Conclusions and Challenges
479(10)
References
481(8)
Chapter 17 Capturing CO2 with Poly(Ionic Liquid)s
489(26)
S. Einloft
F. L. Bernard
F. Dalla Vecchia
17.1 Introduction
489(1)
17.2 Carbon Capture Technologies
490(2)
17.3 Ionic Liquids (ILs)
492(1)
17.4 Polyflonic Liquid)s
493(5)
17.4.1 Poly(Ionic Liquid) Syntheses
493(5)
17.5 Performance of PILs Synthesized by Direct Radical Polymerization of IL Monomers in CO2 Capture and Separation
498(7)
17.5.1 The Effect of the Cation, Anion and Backbone Structure on CO2 Sorption
499(6)
17.6 Performance of PILs Synthesized by Condensation Polymerization and Polymer Modification in CO2 Capture and Separation
505(4)
17.7 Composites (PIL-ILs)
509(6)
Acknowledgements
511(1)
References
512(3)
Chapter 18 Ionic Liquid-based Polymers and Crystals for Dye-sensitized Solar Cells
515(16)
Chuan-Pei Lee
Kuo-Chuan Ho
18.1 Introduction to Solar Energy & Dye-sensitized Solar Cells
515(2)
18.2 Toward All/Quasi-solid-state Dye-sensitized Solar Cells via Ionic Liquid Electrolytes
517(10)
18.2.1 Polymeric Ionic Liquids for Solid-state Dye-sensitized Solar Cells
518(4)
18.2.2 Ionic Liquid Crystals for Solid-state Dye-sensitized Solar Cells
522(5)
18.3 Summary
527(4)
Acknowledgement
528(1)
References
528(3)
Subject Index 531
Åbo Akademi University, Sweden