Muutke küpsiste eelistusi

E-raamat: Polymers for Energy Storage and Conversion

(BASF SE, Ludwigshafen, Germany)
  • Formaat - PDF+DRM
  • Hind: 201,24 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Physical scientists and engineers describe new application of polymers in storing and converting energy that are possible because a number of recent improvements in controlling polymer molecular structure allow the properties of the polymer to be tuned more finely. The topics include high-performance materials for fuel cells based on polymer hydrogels, lithium polymer batteries based on ionic liquids, organic quantum dots grown by molecular layer deposition for photovoltaics, solvent effects in polymer-based organic photovoltaics, and energy as storage in porous polymers. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the polymer molecular structure control thereby tuning of the polymer properties have led to these applications. This book assimilates these advances in the form of a comprehensive text which includes the synthesis and properties of a large number of polymer systems for applications in the areas of lithium batteries, photovoltaics, solar cells, etc.

Polymers for Energy Storage and Conversion describes:

  • PVAc-based polymer blend electrolytes for lithium batteries
  • The structure and properties of polymer hydrogel with respect to its applications for low to intermediate temperature polymer electrolyte-based fuel cells
  • Lithium polymer batteries based on ionic liquids
  • Conjugated polymer-inorganic semiconductor composites
  • The concept of the solar cell with the organic multiple quantum dots (MQDs)
  • The solvent effects in polymer based organic photovoltaic devices
  • The properties of the polymers which factor into their use for solar power both for niche applications as well as for large scale harvesting
  • The use of macroporous organic polymers as materials for energy gas storage.
Preface ix
List of Contributors
xi
1 High Performance Polymer Hydrogel Based Materials for Fuel Cells
1(26)
Yogeshwar Sahai
Jia Ma
1.1 Introduction
1(2)
1.2 Hydrogel Electrolyte
3(1)
1.3 Poly (vinyl alcohol) Hydrogel
4(23)
1.3.1 Chitosan-based Hydrogel in Fuel Cells
9(1)
1.3.2 Chitosan Membrane for Polymer Electrolyte Membrane Fuel Cell
10(7)
1.3.3 Chitosan Membrane for Alkaline Polymer Electrolyte Fuel Cell
17(1)
1.3.4 Chitosan for Fuel Cell Electrode
18(1)
Summary
19(1)
References
20(7)
2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries
27(26)
M. Ulaganathan
R. Nithya
S. Rajendran
2.1 Introduction
27(26)
2.1.1 Polymer Electrolytes
29(3)
2.1.2 Role of Polymers in Electrolyte
32(1)
2.1.3 Polymers
33(6)
2.1.4 Advantages of Polymer Electrolytes in Battery
39(1)
2.1.5 Poly Vinyl Acetate (PVAc)
39(1)
2.1.6 PVAc Based Polymer Electrolytes
40(7)
2.1.7 Surface and Structural Analysis
47(2)
Conclusion
49(1)
References
49(4)
3 Lithium Polymer Batteries Based on Ionic Liquids
53(50)
S. Passerini
M. Montanino
G.B. Appetecchi
3.1 Lithium Batteries
54(7)
3.1.1 Introduction
54(3)
3.1.2 Lithium Polymer Batteries
57(4)
3.2 Lithium Polymer Batteries Containing Ionic Liquids
61(42)
3.2.1 Ionic Liquids
61(1)
3.2.2 Ionic Liquid-Based Polymer Electrolytes
62(26)
3.2.3 Ionic Liquid-Based, Lithium Polymer Battery Performance
88(6)
Glossary
94(2)
References
96(7)
4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics
103(34)
Tetsuzo Yoshimura
4.1 Introduction
104(1)
4.2 Molecular Layer Deposition
105(2)
4.3 Concept of Solar Cells with Organic Quantum Dots
107(3)
4.4 Polymer Multiple Quantum Dots
110(10)
4.4.1 Fabrication Process and Structures
110(5)
4.4.2 Structural Confirmation of Polymer MQDs
115(3)
4.4.3 Photocurrent Spectra
118(1)
4.4.4 MLD on TiO2 Layer
119(1)
4.5 Molecular Multiple Quantum Dots
120(7)
4.5.1 Fabrication Process and Structures
120(3)
4.5.2 Structural Confirmation of Molecular MQDs
123(1)
4.5.3 Photocurrent Spectra
124(3)
4.6 Waveguide-Type Solar Cells
127(8)
4.6.1 Proposed Structures
127(2)
4.6.2 Photocurrent Enhancement by Guided Lights
129(1)
4.6.3 Film-Based Integrated Solar Cells
130(5)
4.7 Summary
135(2)
References
135(2)
5 Solvent Effects in Polymer Based Organic Photovoltaics
137(26)
Matthias A. Ruderer
Peter Muller-Buschbaum
5.1 Introduction
137(2)
5.2 Solar Cell Device Structure and Prepartion
139(2)
5.3 Spin-Coating of Active Layer
141(2)
5.4 Influence of Solvent on Morphology
143(9)
5.4.1 Crystallization Process and Cluster Formation
145(2)
5.4.2 Lateral Structures
147(1)
5.4.3 Vertical Material Composition
148(2)
5.4.4 Mesoscopic Morphology
150(2)
5.5 Residual Solvent
152(4)
5.5.1 Absolute Solvent Content in Homopolymer Films
153(1)
5.5.2 Lateral Solvent Distribution
154(2)
5.6 Summary
156(7)
Acknowledgment
157(1)
References
157(6)
6 Polymer-Inorganic Hybrid Solar Cells
163(36)
Ashish Dubey
Qiquan Qiao
6.1 Introduction
163(10)
6.1.1 Hybrid Solar Cell
165(1)
6.1.2 Semiconducting Conjugated Polymers
166(1)
6.1.3 Inorganic Semiconductors
167(2)
6.1.4 Solar Cell Device Characterization
169(4)
6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites
173(12)
6.2.1 Inorganic Semiconductor in a Bilayer Structure
173(1)
6.2.2 Inorganic Semiconductor as a Blend with Conjugated Polymer
174(5)
6.2.3 Inorganic Metal Oxide as Charge Transport Layer
179(6)
6.3 Conclusion
185(14)
References
191(8)
7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells
199(16)
Matthew Schuette White
Niyazi Serdar Sariciftci
7.1 Introduction
199(1)
7.2 Optical Properties of Semiconducting Polymers
200(6)
7.3 Electrical Properties of Semiconducting Polymers
206(2)
7.4 Mechanical Properties Polymer Solar Cells
208(2)
7.5 Processing of Polymers
210(2)
7.6 State-of-the-art of the Technology
212(3)
References
213(2)
8 Energy Gas Storage in Porous Polymers
215(27)
Joel Fawaz
Kean Wang
Ali Almansoori
8.1 Introduction
216(1)
8.2 Microporous Organic Polymers
217(22)
8.2.1 Polymer of Intrinsic Microporosity
218(4)
8.2.2 Conjugated Microporous Polymers
222(9)
8.2.3 Hypercrosslinked Polymer
231(7)
8.2.4 Covalent Organic Frameworks
238(1)
8.3 Characterization of MOPs
239(3)
Conclusion
242(1)
List of Abbreviation 242(1)
References 243(6)
Index 249
Vikas Mittal is currently an assistant professor in the Department of Chemical Engineering at The Petroleum Institute in Abu Dhabi. He obtained his PhD in 2006 from the Swiss Federal Institute of Technology in Zurich, Switzerland. He also worked as a polymer engineer at BASF Polymer Research in Ludwigshafen, Germany. His research interests include polymer nanocomposites, compatibilization of organic and inorganic materials, polymer colloids, thermal stability studies, and anti-corrosion coatings. He has published more than fifty journal publications, authored as well as edited several books on these subjects.