Muutke küpsiste eelistusi

E-raamat: Polynomial Operator Equations in Abstract Spaces and Applications

(Cameron University)
  • Formaat: 586 pages
  • Ilmumisaeg: 07-Oct-2020
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781000142457
  • Formaat - EPUB+DRM
  • Hind: 76,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 586 pages
  • Ilmumisaeg: 07-Oct-2020
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781000142457

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include:

Special cases of nonlinear operator equations

Solution of polynomial operator equations of positive integer degree n

Results on global existence theorems not related with contractions

Galois theory

Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas

Results on the various Chandrasekhar equations

Weierstrass theorem

Matrix representations

Lagrange and Hermite interpolation

Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies

Advanced numerical analysis

Numerical functional analysis

Functional analysis

Approximation theory

Integral and differential equations Tables include

Numerical solutions for Chandrasekhar's equation I to VI

Error bounds comparison

Accelerations schemes I and II for Newton's method

Newton's method

Secant method The self-contained text thoroughly details results, adds exercises for each chapter, and includes several applications for the solution of integral and differential equations throughout every chapter.

Arvustused

"This book provides a valuable service to those mathematicians working in the area of polynomial operator equations...The theoretical material addressed has a spectrum of applications...applications [ that are] quite relevant and important...Anyone doing research in this area should have a copy of this monograph." Patrick J. Van Fleet, Mathematical and Information Sciences, Huntsville, Texas "A comprehensive presentation of this rapidly growing field...benefiting not only those working in the field but also those interested in, and in need of, information about specific results or techniques...Clear...Logical...Elegant...The author has achieved the optimum at this point." - Dr. George Anastassiou, University of Memphis, Tennessee

List of Tables
v(2)
Introduction vii
1 Quadratic Equations and Perturbation Theory
1(62)
1.1 Algebraic Theory of Quadratic Operators
1(7)
1.2 Perturbation Theory
8(16)
1.3 Chandrasekhar's Integral Equation
24(7)
1.4 Anselone and Moore's Equation
31(3)
1.5 Other Perturbation Theorems
34(14)
Exercises
48(15)
2 More Methods for Solving Quadratic Equations
63(88)
2.1 Banach Algebras
63(6)
2.2 The Majorant Method
69(15)
2.3 Compact Quadratic Equations
84(6)
2.4 Finite Rank Equations
90(10)
2.5 Noncontractive Solutions
100(29)
2.6 On a Class of Quadratic Integral Equations with Perturbation
129(12)
Exercises
141(10)
3 Polynomial Equations in Banach Space
151(58)
3.1 Polynomial Equations
151(22)
3.2 Noncontractive Results
173(17)
3.3 Solving Polynomial Operator Equations in Ordered Banach Spaces
190(10)
Exercises
200(9)
4 Integral and Differential Equations
209(130)
4.1 Equations of Hammerstein Type
209(7)
4.2 Radiative Transfer Equations
216(33)
4.3 Differential Equations
249(14)
4.4 Integrals on a Separable Hilbert Space
263(13)
4.5 Approximation of Solutions of Some Quadratic Integral Equations in Transport Theory
276(19)
4.6 Multipower Equations
295(22)
4.7 Uniformly Contractive Systems and Quadratic Equations in Banach Space
317(12)
Exercises
329(10)
5 Polynomial Operators in Linear Spaces
339(82)
5.1 A Weierstrass Theorem
339(10)
5.2 Matrix Representations
349(10)
5.3 Lagrange and Hermite Interpolation
359(13)
5.4 Bounds of Polynomial Equations
372(19)
5.5 Representations of Multilinear and Polynomial Operators on Vector Spaces
391(8)
5.6 Completely Continuous and Related Multilinear Operators
399(15)
Exercises
414(7)
6 General Methods for Solving Nonlinear Equations
421(30)
6.1 Accessibility of Solutions of Equations by Newton-Like Methods and Applications
421(8)
6.2 The Super-Halley Method
429(9)
6.3 Convergence Rates for Inexact Newton-Like Methods at Singular Points
438(16)
6.4 A Newton-Mysovskii-Type Theorem with Applications to Inexact Newton-Like Methods at their Discretizations
454(30)
6.5 Convergence Domains for some Iterative Processes in Banach Spaces Using Outer and Generalized Inverses
484(17)
6.6 Convergence of Inexact Newton Methods on Banach Spaces with a Convergence Structure
501(15)
Exercises
516(35)
Glossary of Symbols 551(2)
References 553(16)
Index 569
Argyros\, Ioannis K.