Muutke küpsiste eelistusi

E-raamat: Polysaccharide-Based Nanocrystals: Chemistry and Applications

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 03-Dec-2014
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527689385
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 139,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 03-Dec-2014
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527689385
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Polysaccharide nanocrystals can be derived from the renewable resources cellulose, chitin or starch, which makes them ideal candidates for "Green Materials Science". This versatile material class can be used in nanocomposites such as rubber or polyester, and in functional materials such as drug carriers, bio-inspired mechanically adaptive materials or membranes. Moreover, polysaccharide-based nanomaterials are environmentally friendly due to their intrinsic biodegradability.
With its interdisciplinary approach the book gives a thorough introduction to extraction, structure, properties, surface modification, theory, and mechanisms of material formation of polysaccharide nanocrystals from renewable resources. In addition, it provides an in-depth description of plastics, composites, and nanomaterials from cellulose nanocrystals, chitin nanowhiskers and starch nanocrystals.
The first focused, concise and coherent treatment of nanomaterials made from renewable resources such as cellulose, chitin, and starch - for scientists, engineers, graduate students and industrial researchers in the field of polymeric materials.
List of Contributors XIII
Foreword XV
Preface XVII
1 Polysaccharide Nanocrystals: Current Status and Prospects in Material Science 1(14)
Jin Huang
Peter R. Chang
Alain Dufresne
1.1 Introduction to Polysaccharide Nanocrystals
1(2)
1.2 Current Application of Polysaccharide Nanocrystals in Material Science
3(5)
1.3 Prospects for Polysaccharide Nanocrystal-Based Materials
8(1)
List of Abbreviations
9(1)
References
9(6)
2 Structure and Properties of Polysaccharide Nanocrystals 15(48)
Fei Hu
Shiyu Fu
Jin Huang
Debbie P. Anderson
Peter R. Chang
2.1 Introduction
15(1)
2.2 Cellulose Nanocrystals
16(25)
2.2.1 Preparation of Cellulose Nanocrystals
16(10)
2.2.1.1 Acid Hydrolysis Extraction of Cellulose Nanocrystals
16(3)
2.2.1.2 Effects of Acid Type
19(5)
2.2.1.3 Effects of Pretreatment
24(2)
2.2.2 Structure and Properties of Cellulose Nanocrystals
26(15)
2.2.2.1 Structure and Rigidity of Cellulose Nanocrystals
26(6)
2.2.2.2 Physical Properties of Cellulose Nanocrystals
32(9)
2.3 Chitin Nanocrystals
41(6)
2.3.1 Preparation of Chitin Nanocrystals
41(2)
2.3.1.1 Extraction of Chitin Nanocrystals by Acid Hydrolysis
41(1)
2.3.1.2 Extraction of Chitin Nanocrystals by TEMPO Oxidation
42(1)
2.3.2 Structure and Properties of Chitin Nanocrystals
43(4)
2.3.2.1 Structure and Rigidity of Chitin Nanocrystals
43(2)
2.3.2.2 Properties of Chitin Nanocrystal Suspensions
45(2)
2.4 Starch Nanocrystals
47(5)
2.4.1 Preparation of Starch Nanocrystals
47(3)
2.4.1.1 Extraction of Starch Nanocrystals by Acid Hydrolysis
47(2)
2.4.1.2 Effect of Ultrasonic Treatment
49(1)
2.4.1.3 Effect of Pretreatment
50(1)
2.4.2 Structure and Properties of Starch Nanocrystals
50(13)
2.4.2.1 Structure of Starch Nanocrystals
50(1)
2.4.2.2 Properties of Starch Nanocrystal Suspensions
51(1)
2.5 Conclusion and Prospects
52(1)
List of Abbreviations
53(1)
References
54(9)
3 Surface Modification of Polysaccharide Nanocrystals 63(46)
Ning Lin
Alain Dufresne
3.1 Introduction
63(1)
3.2 Surface Chemistry of Polysaccharide Nanocrystals
63(3)
3.2.1 Surface Hydroxyl Groups
63(2)
3.2.2 Surface Groups Originating from Various Extraction Methods
65(1)
3.3 Approaches and Strategies for Surface Modification
66(4)
3.3.1 Purpose and Challenge of Surface Modification
66(1)
3.3.2 Comparison of Different Approaches and Strategies of Surface Modification
67(3)
3.4 Adsorption of Surfactant
70(2)
3.4.1 Anionic Surfactant
70(1)
3.4.2 Cationic Surfactant
71(1)
3.4.3 Nonionic Surfactant
71(1)
3.5 Hydrophobic Groups Resulting from Chemical Derivatization
72(9)
3.5.1 Acetyl and Ester Groups with Acetylation and Esterification
72(5)
3.5.2 Carboxyl Groups Resulting from TEMPO-Mediated Oxidation
77(2)
3.5.3 Derivatization with Isocyanate Carboamination
79(1)
3.5.4 Silyl Groups Resulting from Silylation
79(2)
3.5.5 Cationic Groups Resulting from Cationization
81(1)
3.6 Polymeric Chains from Physical Absorption or Chemical Grafting
81(11)
3.6.1 Hydrophilic Polymer
82(1)
3.6.2 Polyester
83(2)
3.6.3 Polyolefin
85(5)
3.6.4 Block Copolymer
90(1)
3.6.5 Polyurethane and Waterborne Polyurethane
91(1)
3.6.6 Other Hydrophobic Polymer
92(1)
3.7 Advanced Functional Groups and Modification
92(6)
3.7.1 Fluorescent and Dye Molecules
94(1)
3.7.2 Amino Acid and DNA
95(1)
3.7.3 Self-Cross-linking of Polysaccharide Nanocrystals
95(1)
3.7.4 Photobactericidal Porphyrin Molecule
96(1)
3.7.5 Imidazolium Molecule
97(1)
3.7.6 Cyclodextrin Molecule and Pluronic Polymer
97(1)
3.8 Concluding Remarks
98(1)
List of Abbreviations
98(2)
References
100(9)
4 Preparation of Polysaccharide Nanocrystal-Based Nanocomposites 109(56)
Hou-Yong Yu
Jin Huang
Youli Chen
Peter R. Chang
4.1 Introduction
109(1)
4.2 Casting/Evaporation Processing
110(11)
4.2.1 Solution Casting/Evaporation Processing
110(1)
4.2.2 Solution Casting in Aqueous Medium
111(6)
4.2.2.1 Dispersion Stability of Polysaccharide Nanocrystals in Aqueous Medium
111(1)
4.2.2.2 Blending with Hydrophilic Polymers
112(4)
4.2.2.3 Blending with Hydrophobic Polymers
116(1)
4.2.3 Solution Casting in Organic Medium
117(4)
4.2.3.1 Dispersion Stability of Polysaccharide Nanocrystals in Organic Medium
117(1)
4.2.3.2 Blending with Polymers in Organic Solvent
118(3)
4.3 Thermoprocessing Methods
121(6)
4.3.1 Thermoplastic Materials Modified with Polysaccharide Nanocrystals
121(1)
4.3.2 Influence of Surface Modification of Polysaccharide Nanocrystals on Nanocomposite Thermoprocessing
122(5)
4.4 Preparation of Nanofibers by Electrospinning Technology
127(8)
4.4.1 Electrospinning Technology
127(5)
4.4.1.1 Concepts
127(1)
4.4.1.2 Formation Process of Nanofibers
128(1)
4.4.1.3 Basic Electrospinning Parameters and Devices
129(1)
4.4.1.4 Newly Emerging Electrospinning Techniques
130(2)
4.4.2 Nanocomposite Nanofibers Filled with Polysaccharide Nanocrystals
132(3)
4.4.2.1 Electrospun Nanofibers in Aqueous Medium
132(2)
4.4.2.2 Electrospun Nanofibers in Non-aqueous Medium
134(1)
4.5 Sol—Gel Method
135(9)
4.5.1 Concepts of Sol—Gel Process
135(1)
4.5.2 Polysaccharide Nanocrystal-Based or -Derived Nanocomposites Prepared by Sol—Gel Method
136(1)
4.5.3 Chiral Nanocomposites Using Cellulose Nanocrystal Template
137(7)
4.5.3.1 Inorganic Chiral Materials Based on Cellulose Nanocrystal Template
137(1)
4.5.3.2 Chiral Porous Materials
138(3)
4.5.3.3 Chiral Porous Carbon Materials
141(2)
4.5.3.4 Metal Nanoparticle-Decorated Chiral Nematic Materials
143(1)
4.6 Self-Assembly Method
144(8)
4.6.1 Overview of Self-Assembly Method
144(1)
4.6.2 Self-Assembly Method Toward Polysaccharide Nanocrystal-Modified Materials
145(5)
4.6.2.1 Self-Assembly of Polysaccharide Nanocrystals in Aqueous Medium
145(3)
4.6.2.2 Self-Assembly of Polysaccharide Nanocrystals in Organic Medium
148(1)
4.6.2.3 Self-Assembly of Polysaccharide Nanocrystals in Solid Film
148(2)
4.6.3 Polysaccharide Nanocrystal-Modified Materials Prepared by LBL Method
150(2)
4.7 Other Methods and Prospects
152(1)
List of Abbreviations
153(1)
References
154(11)
5 Polysaccharide Nanocrystal-Reinforced Nanocomposites 165(54)
Hanieh Kargarzadeh
Ishak Ahmad
5.1 Introduction
165(1)
5.2 Rubber-Based Nanocomposites
166(9)
5.3 Polyolefin-Based Nanocomposites
175(3)
5.4 Polyurethane and Waterborne Polyurethane-Based Nanocomposites
178(14)
5.5 Polyester-Based Nanocomposites
192(8)
5.6 Starch-Based Nanocomposites
200(4)
5.7 Protein-Based Nanocomposites
204(7)
5.8 Concluding Remarks
211(1)
List of Abbreviations
211(2)
References
213(6)
6 Polysaccharide Nanocrystals-Based Materials for Advanced Applications 219(36)
Ning Lin
Jin Huang
Alain Dufresne
6.1 Introduction
219(1)
6.2 Surface Characteristics Induced Functional Nanomaterials
220(8)
6.2.1 Active Groups
220(5)
6.2.1.1 Importing Functional Groups or Molecules
220(2)
6.2.1.2 Template for Synthesizing Inorganic Nanoparticles
222(3)
6.2.2 Surface Charges and Hydrophilicity
225(2)
6.2.2.1 Emulsion Nanostabilizer
225(1)
6.2.2.2 High-Efficiency Adsorption
226(1)
6.2.2.3 Permselective Membrane
226(1)
6.2.3 Nanoscale and High Surface Area
227(1)
6.2.3.1 Surface Cell Cultivation
227(1)
6.2.3.2 Water Decontamination
227(1)
6.3 Nano-Reinforcing Effects in Functional Nanomaterials
228(11)
6.3.1 Soft Matter
229(4)
6.3.1.1 Hydrogel
229(2)
6.3.1.2 Sponge, Foam, Aerogel, and Tissue-Engineering Nanoscaffold
231(2)
6.3.2 Special Mechanical Materials
233(3)
6.3.3 Self-Healable and Shape-Memory Materials
236(1)
6.3.4 Polymeric Electrolytes and Battery
237(1)
6.3.5 Semi-conducting Material
238(1)
6.4 Optical Materials Derived from Liquid Crystalline Property
239(2)
6.5 Special Films and Systems Ascribed to Barrier Property
241(3)
6.5.1 Drug Delivery — Barrier for Drug Molecules
242(2)
6.5.2 Barrier Nanocomposites — Barrier for Water and Oxygen
244(1)
6.6 Other Functional Applications
244(1)
6.7 Concluding Remarks
244(1)
List of Abbreviations
245(1)
References
246(9)
7 Characterization of Polysaccharide Nanocrystal-Based Materials 255(46)
Alain Dufresne
Ning Lin
7.1 Introduction
255(1)
7.2 Mechanical Properties of Polysaccharide Nanocrystals
256(5)
7.2.1 Intrinsic Mechanical Properties of Polysaccharide Nanocrystals
256(3)
7.2.2 Mechanical Properties of Polysaccharide Nanocrystal Films
259(2)
7.3 Dispersion of Polysaccharide Nanocrystals
261(8)
7.3.1 Observation of Polysaccharide Nanocrystals in Matrix
263(3)
7.3.2 Three-Dimensional Network of Polysaccharide Nanocrystals
266(3)
7.4 Mechanical Properties of Polysaccharide Nanocrystal-Based Materials
269(7)
7.4.1 Influence of the Morphology and Dimensions of the Nanocrystals
273(1)
7.4.2 Influence of the Processing Method
274(2)
7.5 Polysaccharide Nanocrystal/Matrix Interfacial Interactions
276(5)
7.6 Thermal Properties of Polysaccharide Nanocrystal-Based Materials
281(3)
7.6.1 Thermal Properties of Polysaccharide Nanocrystals
281(1)
7.6.2 Glass Transition of Polysaccharide Nanocrystal-Based Nanocomposites
282(1)
7.6.3 Melting/Crystallization Temperature of Polysaccharide Nanocrystal-Based Nanocomposites
283(1)
7.6.4 Thermal Stability of Polysaccharide Nanocrystal-Based Nanocomposites
284(1)
7.7 Barrier Properties of Polysaccharide Nanocrystal-Based Materials
284(5)
7.7.1 Barrier Properties of Polysaccharide Nanocrystal Films
285(1)
7.7.2 Swelling and Sorption Properties of Polysaccharide Nanocrystal-Based Nanocomposites
286(1)
7.7.3 Water Vapor Transfer and Permeability of Polysaccharide Nanocrystal-Based Nanocomposites
287(1)
7.7.4 Gas Permeability of Polysaccharide Nanocrystal-Based Nanocomposites
288(1)
7.8 Concluding Remarks
289(1)
List of Abbreviations
290(1)
References
291(10)
Index 301
Prof. Dr. Jin Huang is affiliated with College of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, China. He received the PhD from College of Chemistry and Molecular Sciences, Wuhan University, China. His research interest focuses on "Developing chemical and physical methodology and technologies to manufacturing green materials from biomass resources". He has worked on the preparation and evaluation of bioplastics, composites and nanocomposites using natural polymers including cellulose, chitin and chitosan, starch, plant proteins etc., and explored some advanced applications in biomedical field. Up to now, he has authored and co-authored more than 100 peer-reviewed journal publications (h-index of 24), 7 book chapters, over 40 granted patents, and many conference papers/presentations.

Prof. Dr. Chang is affiliated with Agriculture and Agri-Food Canada/Government of Canada, and with the Department of Chemical and Biological Engineering, University of Saskatchewan, Canada. His research interests focus on "developing new opportunities from bio-resources for supporting a robust and vibrant bioeconomy". He works on the characterization and processing of biopolymers from agricultural/biomass production, and devising functional systems (bioplastics, biocomposites, nanocomposites, biomaterials etc.) and other industrial products. Prior to his current postings, Dr. Chang worked 15 years for several consulting firms which offered practical solutions to domestic and international companies in the agri-food and bio-resource industries. He has authored 120+ peer-reviewed papers (h-index of 29), 90+ technology transfer contract reports to industry, many authoritative reviews and book chapters, four granted patents, and numerous conference papers/presentations.

Dr. Ning Lin received his PhD at the International School of Paper, Print Media and Biomaterials (Pagora) in Grenoble Institute of Technology, France. Currently, he is conducting postdoctoral research in Universite Joseph Fourier and Grenoble Institute of Technology, France. He has authored 14 scientific publications, 4 book chapters and 2 patents. His research interests include chemical modification, design and development of nanocomposite, and functional application based on biomass nanoparticles.

Professor Dr. Alan Dufresne is affiliated with The International School of Paper, Print Media and Biomaterials (Pagora) at Grenoble Institute of Technology, France. He received his PhD in 1991 from the Department of Electronic at the Toulouse National Institute of Applied Science. His main research interests concern the processing and characterization of polymer nanocomposites reinforced with nanoparticles extracted from renewable resources. He has authored and co-authored more than 200 scientific publications (h-index of 58) and 38 book chapters, as well as a monograph on nanocellulose in 2012. He was invited professor at Universidade Federal de Rio de Janeiro (UFRJ) (Brazil) and Universiti Kebangsaan Malaysia (UKM) (Malaysia).