Muutke küpsiste eelistusi

E-raamat: Polyurethane Shape Memory Polymers

(Nanyang Techological University, Singapore), (Helvoet Rubber & Plastic Technologies Pte Ltd., Singapore), (Heriot Watt University, Edinburgh, UK)
  • Formaat: 383 pages
  • Ilmumisaeg: 08-Sep-2011
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040210505
  • Formaat - EPUB+DRM
  • Hind: 123,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 383 pages
  • Ilmumisaeg: 08-Sep-2011
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040210505

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Shape memory polymers (SMPs) are some of the most important and valuable engineering materials developed in the last 25 years. These fascinating materials demonstrate remarkably versatile propertiesincluding capacity for actuation and stimulus responsivenessthat are enabling technologists to develop applications used to explore everything from the outer reaches of space to the inside of the human body.

Polyurethane Shape Memory Polymers details the fundamentals of SMP makeup, as well as their shape-recovery features and their seemingly endless potential for use in applications ranging from the macro- to submicron scales. With an abundance of illustrations and vivid pictures to explain how SMPs and their composites work and how they can be used, this book covers:











History and most recent developments in SMPs





Thermomechanical properties and behavior of the polymers and their composites





Modification of SMPs and novel actuation mechanisms





Large-scale surface pattern generation





Multi-shape memory effect





Fabrication techniques





Characterization of composites

A must-have reference for anyone working in the materials science and engineering fields, this book outlines the propertiessuch as light weight, low cost, and ability to handle high strainthat make the easily processed SMPs so useful in fields including aerospace, biomedicine, and textiles. It is intended to help readers understand and apply the knowledge and techniques presented to develop new innovations that will further benefit society.

Arvustused

"One in all, the authors managed to write a book which gives a comprehensive overview on polyurethane shape memory polymer research. Due to the authors long-term research experience, I am optimistic that Polyurethane Shape Memory Polymers will be a success story. Everyone, who wants to learn about these fascinating materials or get inspired, will find plenty of information and a valuable source of inspiration." -- Dr. Thorsten Pretsch, BAM Federal Institute for Materials Research and Testing, Berlin, Germany

Forewords ix
Preface xiii
Authors xv
Chapter 1 Introduction 1(30)
1.1 Shape Memory Materials and Shape Memory Polymers
1(5)
1.2 Mechanisms of Shape Memory Effects in Shape Memory Polymers
6(3)
1.3 Typical Applications of Shape Memory Polymers
9(4)
1.4 Polyurethane Shape Memory Polymers
13(7)
1.5 Outline of Book
20(1)
Acknowledgments
21(1)
References
21(10)
Chapter 2 Thermomechanical Behavior of Polyurethane Shape Memory Polymer 31(20)
2.1 Introduction
31(2)
2.2 Glass Transition Temperature and Thermal Stability
33(1)
2.3 Dynamic Mechanical Properties
34(2)
2.4 Uniaxial Tension in Glass State
36(2)
2.5 Uniaxial Tension in Rubber State
38(9)
2.6 Recovery Tests
47(1)
2.7 Summary
48(2)
Acknowledgment
50(1)
References
50(1)
Chapter 3 Effects of Moisture on Glass Transition Temperature and Applications 51(20)
3.1 Introduction
51(1)
3.2 Moisture Absorption in Room-Temperature Water
51(2)
3.3 Glass Transition Temperature after Immersion
53(2)
3.4 Evolution of Glass Transition Temperature upon Thermal Cycling
55(1)
3.5 Interaction of Water and Polyurethane SMP
55(4)
3.6 Correlation of Moisture, Glass Transition Temperature, and Hydrogen Bonding
59(6)
3.7 New Features Based on Effects of Moisture
65(1)
3.8 Recovery Tests
66(3)
3.9 Summary
69(1)
Acknowledgment
69(1)
References
69(2)
Chapter 4 Electrically Conductive Polyurethane Shape Memory Polymers 71(22)
4.1 Introduction
71(1)
4.2 Preparation of Electrically Conductive Polyurethane SMP
72(1)
4.3 Shape Recovery by Passing Electrical Current
73(1)
4.4 Distribution of Carbon Powder in Polyurethane SMP
73(3)
4.5 Electrical Resistivity
76(5)
4.5.1 Dependence on Loading of Carbon Powder
76(1)
4.5.2 Effects of Temperature and Uniaxial Mechanical Strain
77(4)
4.6 Thermal Stability
81(1)
4.7 Uniaxial Tensile Testing at Room Temperature
82(2)
4.8 Shape Memory Properties upon Heating
84(6)
4.8.1 Fixable Strain
85(1)
4.8.2 Recoverable Strain
85(3)
4.8.3 Recovery Stress
88(2)
4.9 Summary
90(1)
Acknowledgment
90(1)
References
90(3)
Chapter 5 Effects of Moisture on Electrically Conductive Polyurethane Shape Memory Polymers 93(24)
5.1 Introduction
93(1)
5.2 Absorption of Moisture in Room-Temperature Water
93(2)
5.3 Electrical Resistivity after Immersion
95(1)
5.4 Glass Transition Temperature after Immersion
96(1)
5.5 Evolution of Glass Transition Temperature upon Thermal Cycling
97(1)
5.6 Correlation of Moisture Absorption, Loading of Carbon Powder, and Glass Transition Temperature
98(4)
5.7 Effects of Moisture on Thermomechanical Properties
102(12)
5.7.1 Damping Capability
102(3)
5.7.2 Young's Modulus
105(3)
5.7.3 Uniaxial Tension Behavior
108(3)
5.7.4 Moisture-Responsive Shape Recovery
111(3)
5.8 Summary
114(1)
Acknowledgment
114(1)
References
114(3)
Chapter 6 Magnetic and Conductive Polyurethane Shape Memory Polymers 117(30)
6.1 Introduction
117(1)
6.2 Iron Oxide Micro Particles
117(10)
6.2.1 Influence of Moisture on Tg
118(2)
6.2.2 Alignment of Iron Oxide Micro Particles
120(4)
6.2.3 Altering Surface Roughness and Morphology
124(3)
6.3 Nickel Micro and Nano Powders
127(3)
6.3.1 Alignment of Ni Powder
127(3)
6.3.2 Vertical Chains
130(1)
6.4 Electrically Conductive SMPs
130(13)
6.4.1 Ni Powder
133(6)
6.4.2 Polyurethane-Carbon Black with Additional Nickel Powder
139(4)
6.5 Summary
143(1)
Acknowledgments
143(1)
References
144(3)
Chapter 7 Shape Memory Polymer Nanocomposites 147(38)
7.1 Introduction
147(3)
7.2 Synthesis Techniques of SMP Nanocomposites
150(4)
7.2.1 Solution Mixing
150(1)
7.2.2 Melting Mixing
151(1)
7.2.3 In Situ or Interactive Polymerization
152(1)
7.2.4 Electrospinning
153(1)
7.2.5 Techniques to Enhance Dispersion of CNTs
153(1)
7.3 Shape Memory Polymer Nanocomposites
154(20)
7.3.1 Nanocomposites for Mechanical Enhancement
154(13)
7.3.1.1 Nanoparticle-Based SMP Nanocomposites
154(2)
7.3.1.2 Clay-Based SMP Nanocomposites
156(7)
7.3.1.3 CNT-Based Nanocomposites
163(2)
7.3.1.4 Carbon Nanofibers
165(2)
7.3.2 SMP Nanocomposites for Electrical Actuation
167(5)
7.3.2.1 Carbon Nanoparticle-Based Nanocomposites
168(1)
7.3.2.2 CNF- and CNT-Based Nanocomposites
169(1)
7.3.2.3 Graphene-Based Nanocomposites
170(2)
7.3.3 SMP Nanocomposites for Magnetic Field Actuation
172(1)
7.3.4 SMP Nanocomposites for Optical and Photovoltaic Actuation
172(1)
7.3.5 Thermal Properties of SMP Nanocomposites
173(1)
7.4 Summary
174(1)
Acknowledgment
174(1)
References
174(11)
Chapter 8 Porous Polyurethane Shape Memory Polymers 185(56)
8.1 Introduction
185(3)
8.2 Water as Foaming Agent for Porous SMPs
188(2)
8.2.1 Materials and Sample Preparation
189(1)
8.2.2 Results and Discussion
189(1)
8.3 Formation of Bubbles by Heat Treatment
190(18)
8.3.1 Sample Preparation and Bubble Formation
197(3)
8.3.2 Thing Bubble Sizes
200(8)
8.3.2.1 Bubble Size Adjustment
200(8)
8.3.2.2 Reversible Bubbles
208(1)
8.4 Thermo-mechanical Behaviors of SMP Foams
208(14)
8.4.1 Sample Preparation and Experimental Setup
208(2)
8.4.2 Experiments and Results
210(12)
8.4.2.1 Compression Test
210(4)
8.4.2.2 Free Recovery Test
214(1)
8.4.2.3 Constrained Cooling Test
214(4)
8.4.2.4 Gripping and Shape Recovery Test
218(4)
8.5 Yield Surface of Foam
222(9)
8.5.1 Framework
224(5)
8.5.2 Applications in Foams
229(2)
8.6 Influence of Storage on Polyurethane SMP Foams
231(6)
8.6.1 Pre-Compression and Hibernation
233(1)
8.6.2 Recovery Tests
233(17)
8.6.2.1 Constrained Recovery
233(2)
8.6.2.2 Recovery against Constant Load
235(2)
8.7 Summary
237(1)
Acknowledgments
238(1)
References
238(3)
Chapter 9 Shape Memory Effects at Micro and Nano Scales 241(34)
9.1 Introduction
241(1)
9.2 SMP Thin Wires
242(3)
9.3 SMP Micro Beads
245(5)
9.4 SMP Thin and Ultrathin Films
250(5)
9.4.1 Water Float Casting
250(1)
9.4.2 Spin Coating
251(4)
9.5 Surface Patterning atop Shape Memory Polymers
255(17)
9.5.1 Butterfly-Like Feature
257(4)
9.5.2 Patterning by Indentation, Polishing, and Heating (IPH)
261(6)
9.5.3 Laser-Assisted Patterning
267(5)
9.6 Summary
272(1)
Acknowledgments
272(1)
References
272(3)
Chapter 10 Wrinkling atop Shape Memory Polymers 275(32)
10.1 Introduction
275(3)
10.2 Theory of Wrinkling
278(6)
10.2.1 Semi-Analytical Method
279(4)
10.2.2 Numerical Simulation
283(1)
10.3 Wrinkling atop SMPs
284(19)
10.3.1 Thermomechanical Properties of SMP Samples
284(1)
10.3.2 Wrinkling of Gold Thin Film atop Flat SMP Substrate
285(5)
10.3.3 Wrinkling of Gold Thin Film atop Curved SMP
290(11)
10.3.4 Wrinkling atop Patterned Samples
301(2)
10.4 Summary
303(1)
Acknowledgment
303(1)
References
304(3)
Chapter 11 Medical Applications of Polyurethane Shape Memory Polymers 307(18)
11.1 Introduction
307(2)
11.2 Thermo-Responsive Feature-Based Devices
309(2)
11.3 Thermo- and Moisture-Responsive Feature-Based Devices
311(7)
11.4 Toward Micro Machines
318(3)
11.5 Summary
321(1)
Acknowledgments
321(1)
References
322(3)
Chapter 12 Mechanisms of Multi-Shape and Temperature Memory Effects 325(18)
12.1 Multi-Shape Memory Effect and Temperature Memory Effect
325(5)
12.2 Demonstration of Multi-SME and TME in Polyurethane SMP
330(3)
12.2.1 Multi-SME
330(2)
12.2.2 TME
332(1)
12.3 Mechanisms
333(7)
12.3.1 Multi-SME
333(4)
12.3.2 TME
337(2)
12.3.3 Influence of Hysteresis
339(1)
12.4 Summary
340(1)
Acknowledgments
340(1)
References
341(2)
Chapter 13 Future of Polyurethane Shape Memory Polymers 343(14)
13.1 Characterization and Modeling of SMPs
343(1)
13.2 Stability of SME
344(1)
13.3 Cyclic Actuation
345(5)
13.4 Alternative Actuation Techniques
350(1)
13.5 Multiple Functions
351(3)
Acknowledgments
354(1)
References
354(3)
Index 357
W.M. Huang is an Associate Professor of Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore.