Muutke küpsiste eelistusi

E-raamat: Population Dynamics: Algebraic And Probabilistic Approach

(V I Romanovskiy Inst Of Mathematics, Uzbekistan)
  • Formaat: 460 pages
  • Ilmumisaeg: 22-Apr-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811211249
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 122,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 460 pages
  • Ilmumisaeg: 22-Apr-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811211249
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The book contains a very popular topic since the number of young scientists interested in dynamical systems is increasing as there are a multitude of applications in biology, mathematics, medicine, and physics. It is the first-ever book published in English on this topic. The book contains results of many recent papers related to population dynamics"--

A population is a summation of all the organisms of the same group or species, which live in a particular geographical area, and have the capability of interbreeding. The main mathematical problem for a given population is to carefully examine the evolution (time dependent dynamics) of the population. The mathematical methods used in the study of this problem are based on probability theory, stochastic processes, dynamical systems, nonlinear differential and difference equations, and (non-)associative algebras. A state of a population is a distribution of probabilities of the different types of organisms in every generation. Type partition is called differentiation (for example, sex differentiation which defines a bisexual population). This book systematically describes the recently developed theory of (bisexual) population, and mainly contains results obtained since 2010. The book presents algebraic and probabilistic approaches in the theory of population dynamics. It also includes several dynamical systems of biological models such as dynamics generated by Markov processes of cubic stochastic matrices; dynamics of sex-linked population; dynamical systems generated by a gonosomal evolution operator; dynamical system and an evolution algebra of mosquito population; and ocean ecosystems. The main aim of this book is to facilitate the reader's in-depth understanding by giving a systematic review of the theory of population dynamics which has wide applications in biology, mathematics, medicine, and physics.



This book outlines algebraic and probabilistic approaches in the theory of population dynamics. It discusses several kinds of algebra related to population dynamics, including genetic algebras, algebras of bisexual population, and flows of algebras; a probabilistic approach involving Markov processes of cubic stochastic matrices and cubic stochastic operators and processes; and dynamical systems of biological models, particularly dynamical systems of free population, sex-linked population, systems generated by a gonosomal evolution operator, mosquito populations, and ocean ecosystems. Annotation ©2020 Ringgold, Inc., Portland, OR (protoview.com)
Preface xiii
1 Introduction
1(16)
1.1 Background and motivation
1(3)
1.2 Preliminaries from biology
4(7)
1.3 Free population
11(1)
1.4 Bisexual population
12(5)
Algebraic approach
17(208)
2 Algebraic preliminaries
19(18)
2.1 Basic definitions of abstract algebras
19(4)
2.2 Cubic matrices
23(1)
2.3 Algebras of cubic matrices
24(13)
2.3.1 Isomorphic ACMs
25(4)
2.3.2 Accompanying algebra of an ACM
29(1)
2.3.3 Commutativity and solvability of equations in ACMs
30(1)
2.3.4 Subalgebras of ACM
31(3)
2.3.5 ACM is not baric
34(3)
3 Genetic algebras
37(40)
3.1 Variations of genetic algebras
37(15)
3.1.1 Baric algebras
38(3)
3.1.2 Train algebras
41(2)
3.1.3 Gametic algebra for linked loci
43(2)
3.1.4 Bernstein's problem and algebras
45(7)
3.2 Dibaric algebras
52(8)
3.3 Evolution algebras
60(17)
3.3.1 A criterion for an evolution algebra to be baric
61(1)
3.3.2 Dibaric evolution algebra
62(2)
3.3.3 Right nilpotent evolution algebras
64(4)
3.3.4 Maximal nilindex of a nilpotent evolution algebra
68(2)
3.3.5 Classification of complex 2-dimensional evolution algebras
70(4)
3.3.6 Classification of real 2-dimensional evolution algebras
74(3)
4 Algebras of bisexual population
77(48)
4.1 Evolution algebra of bisexual population
77(22)
4.1.1 Basic properties of the EABP
77(2)
4.1.2 B is not a baric algebra
79(1)
4.1.3 B is a dibaric algebra
79(8)
4.1.4 The derivations of B
87(1)
4.1.5 Dynamics of the operator (1.6)
88(2)
4.1.6 A special case of an EABP
90(9)
4.2 Algebra of "chicken" population
99(21)
4.2.1 Definition and basic properties of the EACP
99(4)
4.2.2 Evolution subalgebras and operator of C
103(3)
4.2.3 The enveloping algebra of an EACP
106(2)
4.2.4 The centroid of an EACP
108(2)
4.2.5 The structure of EACP
110(2)
4.2.6 Classification of 2 and 3-dimensional EACP
112(1)
4.2.7 The description of complex EACP
113(7)
4.3 Generalization of the EACP
120(5)
5 Flows of algebras
125(100)
5.1 Chains of evolution algebras
125(26)
5.1.1 Definitions
125(2)
5.1.2 Two-dimensional CEAs
127(12)
5.1.3 A construction of chains of three-dimensional EAs
139(6)
5.1.4 High dimensional CEAs
145(6)
5.2 Property transitions of CEA
151(29)
5.2.1 Baric property transition
151(8)
5.2.2 Absolute nilpotent elements transition
159(4)
5.2.3 Idempotent elements transition
163(4)
5.2.4 Dynamics of CEAs given by matrix (5.18)
167(2)
5.2.5 Classification dynamics of CEAs
169(11)
5.3 Chains of evolution algebras of chicken population
180(13)
5.3.1 Examples of CEACPs
182(8)
5.3.2 Time depending dynamics of CEACP
190(3)
5.4 Flows of finite dimensional algebras
193(32)
5.4.1 Definitions and interpretations
194(3)
5.4.2 Examples of FAs
197(3)
5.4.3 Reduction of Kolmogorov-Chapman's equations from cubic matrices to square ones
200(6)
5.4.4 Constructions and time dynamics of FAs
206(5)
5.4.5 Time non-homogeneous FAs
211(1)
5.4.6 Constructions for Maksimov's multiplications
211(4)
5.4.7 Multiplication of solutions
215(3)
5.4.8 Time dependent dynamics of algebraic properties in an FA
218(7)
Probabilistic approach
225(66)
6 Markov processes of cubic stochastic matrices
227(38)
6.1 Maksimov's cubic stochastic matrices
227(5)
6.1.1 Multiplications
227(2)
6.1.2 Stochasticity
229(2)
6.1.3 Probabilistic interpretations of stochasticity
231(1)
6.2 Markov interaction process
232(10)
6.2.1 Ergodic property of MIP
235(5)
6.2.2 Markov chains induced by cubic matrices
240(2)
6.3 Markov process as a quadratic stochastic process
242(16)
6.3.1 Preliminaries, problems and motivations
242(5)
6.3.2 QSPs of type (3|0)
247(2)
6.3.3 QSPs of type (12|a0)
249(9)
6.4 A population with possibility of twin birth
258(7)
7 Cubic stochastic operators and processes
265(26)
7.1 Construction of CSO for finite set
265(8)
7.1.1 Definitions
265(2)
7.1.2 Non-Volterra CSOs
267(4)
7.1.3 A four-dimensional case
271(2)
7.2 Construction of CSO for continual set
273(7)
7.2.1 Definitions
273(2)
7.2.2 Examples of CSP
275(2)
7.2.3 The construction
277(3)
7.3 Integro-differential equations for CSP
280(3)
7.4 Reduction of the integro-differential equations to differential equations
283(8)
Concrete populations dynamics
291(134)
8 Dynamics generated by quadratic stochastic operators
293(44)
8.1 Free population: Volterra's discrete model
293(16)
8.1.1 Canonical form of Volterra operator
294(2)
8.1.2 Lyapunov functions
296(6)
8.1.3 The set of limit points of trajectory
302(2)
8.1.4 The backward trajectories
304(4)
8.1.5 Biological interpretations
308(1)
8.2 Non-Volterra QSO generated by a product measure
309(5)
8.2.1 A non-Volterra QSO
309(3)
8.2.2 The behavior of the trajectories
312(2)
8.3 Separable quadratic stochastic operators
314(5)
8.3.1 Classification of SQSOs
315(1)
8.3.2 Lyapunov functions of SQSO
316(2)
8.3.3 -Limit set of SQSO
318(1)
8.4 Quasi-strictly non-Volterra QSO
319(18)
8.4.1 Fixed point of the operator
320(5)
8.4.2 The type of the fixed point
325(3)
8.4.3 The -limit set
328(1)
8.4.4 Case e = 1
328(3)
8.4.5 Case e [ 0, 1)
331(6)
9 Dynamics of sex-linked population
337(24)
9.1 Bisexual population: Volterra operators
337(4)
9.2 Dynamical systems with a preference of a type of females and males
341(15)
9.2.1 A simple case: a hard constraint
341(4)
9.2.2 All possible constraints for n = v = 2
345(9)
9.2.3 Biological interpretation
354(2)
9.3 A predator-prey system
356(5)
10 Dynamical systems generated by a gonosomal evolution operator
361(18)
10.1 Bisexual population: gonosomal evolution operator
361(2)
10.2 Dynamical system generated by the operator (10.2)
363(7)
10.2.1 Fixed points
364(1)
10.2.2 Dynamics on invariant sets
365(5)
10.3 A normalized gonosomal operator
370(9)
11 Dynamical system and evolution algebra of mosquito population
379(22)
11.1 The model of mosquito population
379(3)
11.2 Discrete-time dynamics of mosquito populations
382(4)
11.2.1 Fixed points of M
384(2)
11.3 Evolution algebras of mosquito population
386(13)
11.3.1 Definitions
386(2)
11.3.2 Idempotent and absolute nilpotent elements
388(4)
11.3.3 Simplicity
392(4)
11.3.4 A subset of limit points of the evolution operator
396(3)
11.4 Biological interpretations
399(2)
12 On ocean ecosystem discrete time dynamics generated by L-Volterra operators
401(24)
12.1 The discrete time ecosystem
401(4)
12.1.1 What is an ecosystem?
401(2)
12.1.2 Evolution operator as a 2-Volterra QSO
403(2)
12.2 Case cd(c + d) = 0
405(7)
12.3 Case cd(c + d) ≠ 0
412(10)
12.3.1 Fixed points of the operator (12.4)
412(3)
12.3.2 The limit points
415(7)
12.4 Biological interpretations
422(3)
Bibliography 425(16)
Index 441