Preface |
|
xiii | |
|
|
1 | (16) |
|
1.1 Background and motivation |
|
|
1 | (3) |
|
1.2 Preliminaries from biology |
|
|
4 | (7) |
|
|
11 | (1) |
|
|
12 | (5) |
|
|
17 | (208) |
|
2 Algebraic preliminaries |
|
|
19 | (18) |
|
2.1 Basic definitions of abstract algebras |
|
|
19 | (4) |
|
|
23 | (1) |
|
2.3 Algebras of cubic matrices |
|
|
24 | (13) |
|
|
25 | (4) |
|
2.3.2 Accompanying algebra of an ACM |
|
|
29 | (1) |
|
2.3.3 Commutativity and solvability of equations in ACMs |
|
|
30 | (1) |
|
|
31 | (3) |
|
|
34 | (3) |
|
|
37 | (40) |
|
3.1 Variations of genetic algebras |
|
|
37 | (15) |
|
|
38 | (3) |
|
|
41 | (2) |
|
3.1.3 Gametic algebra for linked loci |
|
|
43 | (2) |
|
3.1.4 Bernstein's problem and algebras |
|
|
45 | (7) |
|
|
52 | (8) |
|
|
60 | (17) |
|
3.3.1 A criterion for an evolution algebra to be baric |
|
|
61 | (1) |
|
3.3.2 Dibaric evolution algebra |
|
|
62 | (2) |
|
3.3.3 Right nilpotent evolution algebras |
|
|
64 | (4) |
|
3.3.4 Maximal nilindex of a nilpotent evolution algebra |
|
|
68 | (2) |
|
3.3.5 Classification of complex 2-dimensional evolution algebras |
|
|
70 | (4) |
|
3.3.6 Classification of real 2-dimensional evolution algebras |
|
|
74 | (3) |
|
4 Algebras of bisexual population |
|
|
77 | (48) |
|
4.1 Evolution algebra of bisexual population |
|
|
77 | (22) |
|
4.1.1 Basic properties of the EABP |
|
|
77 | (2) |
|
4.1.2 B is not a baric algebra |
|
|
79 | (1) |
|
4.1.3 B is a dibaric algebra |
|
|
79 | (8) |
|
4.1.4 The derivations of B |
|
|
87 | (1) |
|
4.1.5 Dynamics of the operator (1.6) |
|
|
88 | (2) |
|
4.1.6 A special case of an EABP |
|
|
90 | (9) |
|
4.2 Algebra of "chicken" population |
|
|
99 | (21) |
|
4.2.1 Definition and basic properties of the EACP |
|
|
99 | (4) |
|
4.2.2 Evolution subalgebras and operator of C |
|
|
103 | (3) |
|
4.2.3 The enveloping algebra of an EACP |
|
|
106 | (2) |
|
4.2.4 The centroid of an EACP |
|
|
108 | (2) |
|
4.2.5 The structure of EACP |
|
|
110 | (2) |
|
4.2.6 Classification of 2 and 3-dimensional EACP |
|
|
112 | (1) |
|
4.2.7 The description of complex EACP |
|
|
113 | (7) |
|
4.3 Generalization of the EACP |
|
|
120 | (5) |
|
|
125 | (100) |
|
5.1 Chains of evolution algebras |
|
|
125 | (26) |
|
|
125 | (2) |
|
5.1.2 Two-dimensional CEAs |
|
|
127 | (12) |
|
5.1.3 A construction of chains of three-dimensional EAs |
|
|
139 | (6) |
|
5.1.4 High dimensional CEAs |
|
|
145 | (6) |
|
5.2 Property transitions of CEA |
|
|
151 | (29) |
|
5.2.1 Baric property transition |
|
|
151 | (8) |
|
5.2.2 Absolute nilpotent elements transition |
|
|
159 | (4) |
|
5.2.3 Idempotent elements transition |
|
|
163 | (4) |
|
5.2.4 Dynamics of CEAs given by matrix (5.18) |
|
|
167 | (2) |
|
5.2.5 Classification dynamics of CEAs |
|
|
169 | (11) |
|
5.3 Chains of evolution algebras of chicken population |
|
|
180 | (13) |
|
|
182 | (8) |
|
5.3.2 Time depending dynamics of CEACP |
|
|
190 | (3) |
|
5.4 Flows of finite dimensional algebras |
|
|
193 | (32) |
|
5.4.1 Definitions and interpretations |
|
|
194 | (3) |
|
|
197 | (3) |
|
5.4.3 Reduction of Kolmogorov-Chapman's equations from cubic matrices to square ones |
|
|
200 | (6) |
|
5.4.4 Constructions and time dynamics of FAs |
|
|
206 | (5) |
|
5.4.5 Time non-homogeneous FAs |
|
|
211 | (1) |
|
5.4.6 Constructions for Maksimov's multiplications |
|
|
211 | (4) |
|
5.4.7 Multiplication of solutions |
|
|
215 | (3) |
|
5.4.8 Time dependent dynamics of algebraic properties in an FA |
|
|
218 | (7) |
|
|
225 | (66) |
|
6 Markov processes of cubic stochastic matrices |
|
|
227 | (38) |
|
6.1 Maksimov's cubic stochastic matrices |
|
|
227 | (5) |
|
|
227 | (2) |
|
|
229 | (2) |
|
6.1.3 Probabilistic interpretations of stochasticity |
|
|
231 | (1) |
|
6.2 Markov interaction process |
|
|
232 | (10) |
|
6.2.1 Ergodic property of MIP |
|
|
235 | (5) |
|
6.2.2 Markov chains induced by cubic matrices |
|
|
240 | (2) |
|
6.3 Markov process as a quadratic stochastic process |
|
|
242 | (16) |
|
6.3.1 Preliminaries, problems and motivations |
|
|
242 | (5) |
|
|
247 | (2) |
|
6.3.3 QSPs of type (12|a0) |
|
|
249 | (9) |
|
6.4 A population with possibility of twin birth |
|
|
258 | (7) |
|
7 Cubic stochastic operators and processes |
|
|
265 | (26) |
|
7.1 Construction of CSO for finite set |
|
|
265 | (8) |
|
|
265 | (2) |
|
|
267 | (4) |
|
7.1.3 A four-dimensional case |
|
|
271 | (2) |
|
7.2 Construction of CSO for continual set |
|
|
273 | (7) |
|
|
273 | (2) |
|
|
275 | (2) |
|
|
277 | (3) |
|
7.3 Integro-differential equations for CSP |
|
|
280 | (3) |
|
7.4 Reduction of the integro-differential equations to differential equations |
|
|
283 | (8) |
|
Concrete populations dynamics |
|
|
291 | (134) |
|
8 Dynamics generated by quadratic stochastic operators |
|
|
293 | (44) |
|
8.1 Free population: Volterra's discrete model |
|
|
293 | (16) |
|
8.1.1 Canonical form of Volterra operator |
|
|
294 | (2) |
|
|
296 | (6) |
|
8.1.3 The set of limit points of trajectory |
|
|
302 | (2) |
|
8.1.4 The backward trajectories |
|
|
304 | (4) |
|
8.1.5 Biological interpretations |
|
|
308 | (1) |
|
8.2 Non-Volterra QSO generated by a product measure |
|
|
309 | (5) |
|
|
309 | (3) |
|
8.2.2 The behavior of the trajectories |
|
|
312 | (2) |
|
8.3 Separable quadratic stochastic operators |
|
|
314 | (5) |
|
8.3.1 Classification of SQSOs |
|
|
315 | (1) |
|
8.3.2 Lyapunov functions of SQSO |
|
|
316 | (2) |
|
|
318 | (1) |
|
8.4 Quasi-strictly non-Volterra QSO |
|
|
319 | (18) |
|
8.4.1 Fixed point of the operator |
|
|
320 | (5) |
|
8.4.2 The type of the fixed point |
|
|
325 | (3) |
|
|
328 | (1) |
|
|
328 | (3) |
|
|
331 | (6) |
|
9 Dynamics of sex-linked population |
|
|
337 | (24) |
|
9.1 Bisexual population: Volterra operators |
|
|
337 | (4) |
|
9.2 Dynamical systems with a preference of a type of females and males |
|
|
341 | (15) |
|
9.2.1 A simple case: a hard constraint |
|
|
341 | (4) |
|
9.2.2 All possible constraints for n = v = 2 |
|
|
345 | (9) |
|
9.2.3 Biological interpretation |
|
|
354 | (2) |
|
9.3 A predator-prey system |
|
|
356 | (5) |
|
10 Dynamical systems generated by a gonosomal evolution operator |
|
|
361 | (18) |
|
10.1 Bisexual population: gonosomal evolution operator |
|
|
361 | (2) |
|
10.2 Dynamical system generated by the operator (10.2) |
|
|
363 | (7) |
|
|
364 | (1) |
|
10.2.2 Dynamics on invariant sets |
|
|
365 | (5) |
|
10.3 A normalized gonosomal operator |
|
|
370 | (9) |
|
11 Dynamical system and evolution algebra of mosquito population |
|
|
379 | (22) |
|
11.1 The model of mosquito population |
|
|
379 | (3) |
|
11.2 Discrete-time dynamics of mosquito populations |
|
|
382 | (4) |
|
|
384 | (2) |
|
11.3 Evolution algebras of mosquito population |
|
|
386 | (13) |
|
|
386 | (2) |
|
11.3.2 Idempotent and absolute nilpotent elements |
|
|
388 | (4) |
|
|
392 | (4) |
|
11.3.4 A subset of limit points of the evolution operator |
|
|
396 | (3) |
|
11.4 Biological interpretations |
|
|
399 | (2) |
|
12 On ocean ecosystem discrete time dynamics generated by L-Volterra operators |
|
|
401 | (24) |
|
12.1 The discrete time ecosystem |
|
|
401 | (4) |
|
12.1.1 What is an ecosystem? |
|
|
401 | (2) |
|
12.1.2 Evolution operator as a 2-Volterra QSO |
|
|
403 | (2) |
|
|
405 | (7) |
|
|
412 | (10) |
|
12.3.1 Fixed points of the operator (12.4) |
|
|
412 | (3) |
|
|
415 | (7) |
|
12.4 Biological interpretations |
|
|
422 | (3) |
Bibliography |
|
425 | (16) |
Index |
|
441 | |