|
1 Free Radicals Versus Antioxidants |
|
|
1 | (18) |
|
|
1 | (1) |
|
|
2 | (5) |
|
2.1 Formation and Definition of Free Radicals |
|
|
2 | (1) |
|
2.2 How Free Radicals Are Destructive |
|
|
3 | (2) |
|
2.3 Production of Reactive Organic Species |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (12) |
|
|
8 | (1) |
|
3.2 The Locations where Free Radicals and Antioxidants Counteract |
|
|
8 | (1) |
|
3.3 Classification of Antioxidants |
|
|
9 | (7) |
|
|
16 | (3) |
|
2 Chemistry of Natural Super-antioxidants |
|
|
19 | (12) |
|
|
19 | (6) |
|
|
19 | (1) |
|
|
20 | (1) |
|
1.3 Classification and Chemical Structure of Polyphenols |
|
|
21 | (4) |
|
2 Color of Fruits and Vegetables |
|
|
25 | (2) |
|
3 Antioxidant Activity of Polyphenols |
|
|
27 | (4) |
|
|
28 | (3) |
|
|
31 | (52) |
|
|
31 | (5) |
|
1.1 A Brief Introduction of Nanoparticles |
|
|
32 | (1) |
|
1.2 Unique Traits of Nanomaterials |
|
|
33 | (1) |
|
1.3 Synthesis of Nanoparticles |
|
|
33 | (1) |
|
1.4 Characterization of Nanoparticles |
|
|
34 | (2) |
|
2 Nanoparticles as Nano-antioxidants |
|
|
36 | (4) |
|
|
36 | (2) |
|
2.2 Role of Nanoparticles as Antioxidants |
|
|
38 | (2) |
|
3 Metal/Metal Oxide Nanoparticles |
|
|
40 | (16) |
|
|
40 | (3) |
|
|
43 | (1) |
|
3.3 Ceria(CeO2)/Yttria(Y2O3) |
|
|
44 | (3) |
|
3.4 Copper/Copper Oxide (CuO) |
|
|
47 | (2) |
|
3.5 Titanium Dioxide (TiO2) Nanoparticles |
|
|
49 | (1) |
|
3.6 Platinum Nanoparticles |
|
|
50 | (2) |
|
3.7 Iron/Iron Oxide Nanoparticles |
|
|
52 | (2) |
|
3.8 Zinc Oxide Nanoparticles |
|
|
54 | (2) |
|
4 Non-metallic Nano-antioxidants |
|
|
56 | (3) |
|
4.1 Silica Nanoparticles as Nano-antioxidant |
|
|
56 | (1) |
|
|
57 | (2) |
|
5 Polymeric Nano-antioxidants |
|
|
59 | (5) |
|
|
60 | (1) |
|
|
61 | (1) |
|
5.3 Quercetin, Catechin, and Resveratrol |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
6 Nanoemulsions and Nanocarriers |
|
|
64 | (1) |
|
7 Determination of Antioxidant Activity |
|
|
65 | (8) |
|
7.1 Parameters to Measure Antioxidant Ability |
|
|
66 | (1) |
|
7.2 Hydrogen Atom Transfer (HAT) Methods |
|
|
66 | (1) |
|
7.3 Single Electron Transfer (SET) Methods |
|
|
67 | (6) |
|
|
73 | (1) |
|
|
73 | (10) |
|
|
74 | (9) |
|
4 Mechanism of Antioxidant Activity |
|
|
83 | (18) |
|
|
83 | (3) |
|
1.1 Pathways for the Free Radical Production Activity |
|
|
84 | (1) |
|
1.2 Promulgation Mechanism for Free Radical Productivity |
|
|
85 | (1) |
|
|
86 | (1) |
|
3 Mechanism of Antioxidant Activity |
|
|
86 | (7) |
|
3.1 Hydrogen Atom Transfer (HAT) Mechanism |
|
|
87 | (2) |
|
3.2 The SET: Single Electron Transfer Mechanism |
|
|
89 | (1) |
|
3.3 SET-PT: Single Electron Transfer Accompanied with Proton Transfer |
|
|
90 | (1) |
|
3.4 SPLET: Sequential Proton Loss Electron Transfer |
|
|
90 | (1) |
|
3.5 Transition Metals Chelation (TMC) |
|
|
91 | (2) |
|
4 Mechanism for the Functioning of Nano-Antioxidants |
|
|
93 | (8) |
|
4.1 Electron-Hole Excitonic Pairs (e-,H+)Theory |
|
|
93 | (2) |
|
4.2 n-n Stacking Interactions Theory |
|
|
95 | (1) |
|
4.3 Electron Abstraction Theory (EAT) |
|
|
95 | (1) |
|
4.4 Hydrogen Abstraction Theory (HAT) |
|
|
96 | (1) |
|
4.5 Electrostatic Attraction Theory |
|
|
97 | (1) |
|
|
97 | (4) |
|
5 Quantification of Antioxidants |
|
|
101 | (10) |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (3) |
|
4 Operations for QSAR/QSPR Modelling |
|
|
106 | (1) |
|
4.1 Progression Through Stepwise Regression |
|
|
106 | (1) |
|
4.2 Factor Analysis Followed by Multiple Linear Regression (FA-MLR) (Linear Regression with Many More Variables) |
|
|
107 | (1) |
|
4.3 Partial Least Squares Analysis (PLSA) |
|
|
107 | (1) |
|
5 QSAR for Phytochemicals |
|
|
107 | (1) |
|
6 QSAR Modelling Patterns for Nanomaterials |
|
|
108 | (3) |
|
7 Pros and Cons of QSAR Modelling |
|
|
111 | (1) |
References |
|
111 | |