Muutke küpsiste eelistusi

E-raamat: Power Electronics: Circuit Analysis and Design

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Dec-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319683669
  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 22-Dec-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319683669

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This fully updated textbook provides complete coverage of electrical circuits and introduces students to the field of energy conversion technologies, analysis and design. Chapters are designed to equip students with necessary background material in such topics as devices, switching circuit analysis techniques, converter types, and methods of conversion. The book contains a large number of examples, exercises, and problems to help enforce the material presented in each chapter. A detailed discussion of resonant and softswitching dc-to-dc converters is included along with the addition of new chapters covering digital control, non-linear control, and micro-inverters for power electronics applications. Designed for senior undergraduate and graduate electrical engineering students, this book provides students with the ability to analyze and design power electronic circuits used in various industrial applications.

  • Provides a comprehensive overview of power electronic circuits;
  • Fully loaded with examples, exercises and end of chapter problems;
  • Completely updated to include new content on digital control and micro-inverters for power electronics applications.




1 Introduction
1(24)
1.1 Introduction
1(1)
1.2 What Is Power Electronics?
2(2)
1.2.1 Recent Growth in Power Electronics
3(1)
1.3 The History of Power Electronics
4(3)
1.3.1 The History of dc and ac Electricity in the Late Nineteenth Century
4(2)
1.3.2 The History of dc and ac Electricity in the Late Twentieth Century
6(1)
1.3.3 History of Modern Power Electronics
6(1)
1.4 The Need for Power Conversion
7(1)
1.5 Power Electronic Systems
8(11)
1.5.1 Classification of Power Converter Circuits
10(7)
1.5.2 Power Semiconductor Devices
17(1)
1.5.3 Converter Modeling and Control
18(1)
1.6 Applications of Power Electronics
19(1)
1.7 Future Trends
19(1)
1.8 About the Text and Its Nomenclatures
20(5)
1.8.1 About the Text
20(1)
1.8.2 Nomenclature
21(4)
2 Review of Switching Concepts and Power Semiconductor Devices
25(68)
2.1 Introduction
25(1)
2.2 The Need for Switching in Power Electronic Circuits
26(5)
2.3 Switching Characteristics
31(7)
2.3.1 The Ideal Switch
31(1)
2.3.2 The Practical Switch
31(7)
2.4 Switching Functions and Matrix Representation
38(9)
2.5 Types of Switches
47(2)
2.6 Available Semiconductor Switching Devices
49(27)
2.6.1 Bipolar and Unipolar Devices
49(20)
2.6.2 Thyristor-Based Devices
69(7)
2.7 Comparison of Power Devices
76(1)
2.8 Future Trends in Power Devices
77(1)
2.9 Snubber Circuits
78(1)
2.10 Interest in High-Temperature Power Devices: The Wide Band Gap
79(14)
Problems
81(12)
3 Switching Circuits, Power Computations, and Component Concepts
93(80)
3.1 Introduction
93(1)
3.2 Switching Diode Circuits
93(15)
3.2.1 Switching Diode Circuits Under dc Excitation
93(9)
3.2.2 Switching Diode Circuits with an ac Source
102(6)
3.3 Controlled Switching Circuits
108(3)
3.4 Basic Power and Harmonic Concepts
111(24)
3.4.1 Average, Reactive, and Apparent Powers
111(4)
3.4.2 Sinusoidal Waveforms
115(5)
3.4.3 Non-sinusoidal Waveforms
120(15)
3.5 Capacitor and Inductor Responses
135(38)
3.5.1 Capacitor Transient Response
135(4)
3.5.2 Capacitor Steady-State Response
139(1)
3.5.3 Inductor Transient Response
139(3)
3.5.4 Inductor Steady-State Response
142(2)
Problems
144(29)
4 Non-isolated Switch Mode DC-DC Converters
173(100)
4.1 Introduction
173(1)
4.2 Power Supply Application
174(3)
4.2.1 Linear Regulators
174(1)
4.2.2 Switch-Mode Power Supplies
175(2)
4.3 Continuous Conduction Mode
177(50)
4.3.1 The Buck Converter
182(14)
4.3.2 The Boost Converter
196(9)
4.3.3 The Buck-Boost Converter
205(6)
4.3.4 The Fourth-Order Converters
211(14)
4.3.5 Bipolar Output Voltage Converter
225(2)
4.4 Discontinuous Conduction Mode
227(16)
4.4.1 The Buck Converter
228(6)
4.4.2 The Boost Converter
234(4)
4.4.3 The Buck-Boost Converter
238(5)
4.5 The Effects of Converter Non-idealities
243(14)
4.5.1 Inductor Resistance
243(3)
4.5.2 The Boost Converter
246(2)
4.5.3 Transistor and Diode Voltage Drops
248(2)
4.5.4 The Effect of Switch Resistance
250(7)
4.6 Switch Utilization Factor
257(16)
Problems
260(13)
5 Isolated Switch-Mode DC-DC Converters
273(74)
5.1 Introduction
273(1)
5.2 Transformer Circuit Configurations
274(3)
5.2.1 Transformer Model
274(1)
5.2.2 Circuit Configurations
275(2)
5.3 Buck-Derived Isolated Converters
277(26)
5.3.1 Single-Ended Forward Converter
281(9)
5.3.2 Half-Bridge Converters
290(1)
5.3.3 Full-Bridge Converter
291(6)
5.3.4 Push-Pull Converter
297(6)
5.4 Boost-Derived Isolated Converters
303(16)
5.4.1 Single-Ended Flyback Converter
303(9)
5.4.2 Half-Bridge Converter
312(1)
5.4.3 Full-Bridge Converter
312(7)
5.5 Other Isolated Converters
319(10)
5.5.1 Isolated Cuk Converter
319(2)
5.5.2 The Weinberg Converter
321(8)
5.6 Multi-output Converter
329(18)
Problems
330(17)
6 Soft-Switching dc-dc Converters
347(114)
6.1 Types of dc-dc Converters
347(3)
6.1.1 The Resonant Concept
348(1)
6.1.2 Resonant Versus Conventional PWM
349(1)
6.2 Classification of Soft-Switching Resonant Converters
350(1)
6.3 Advantages and Disadvantages of ZCS and ZVS
351(1)
6.3.1 Switching Loci
351(1)
6.3.2 Switching Losses
351(1)
6.4 Zero-Current Switching Topologies
352(31)
6.4.1 The Resonant Switch
352(2)
6.4.2 Steady-State Analysis
354(29)
6.5 Zero-Voltage Switching Topologies
383(15)
6.5.1 Resonant Switch Arrangements
384(1)
6.5.2 Steady-State Analyses
384(14)
6.6 Zero-Voltage and Zero-Current Transition Converters
398(31)
6.6.1 Switching Transition
398(2)
6.6.2 The ZVT Buck Converter
400(8)
6.6.3 The ZVT Boost Converter
408(8)
6.6.4 The Practical ZVT Boost Converter
416(13)
6.7 Generalized Analysis for ZCS
429(32)
6.7.1 The Generalized Switching Cell
430(1)
6.7.2 The Generalized Transformation Table
431(2)
6.7.3 The Basic Operation of the ZCS-QRC Cell
433(4)
6.7.4 The Basic Operation of the ZVS-QRC Cell
437(10)
Problems
447(14)
7 Uncontrolled Diode Rectifier Circuits
461(64)
7.1 Introduction
461(2)
7.2 Single-Phase Rectifier Circuits
463(16)
7.2.1 Resistive Load
463(4)
7.2.2 Inductive Load
467(8)
7.2.3 Capacitive Load Rectifiers
475(3)
7.2.4 Voltage Source in the dc Side
478(1)
7.3 The Effect of the ac-Side Inductance
479(13)
7.3.1 Half-Wave Rectifier with Inductive Load
479(5)
7.3.2 Half-Wave Rectifier with Capacitive Load
484(5)
7.3.3 Full-Wave Rectifiers with an Inductive Load
489(3)
7.4 Three-Phase Rectifier Circuits
492(9)
7.4.1 Three-Phase Half-Wave Rectifier
493(6)
7.4.2 Three-Phase Full-Wave Rectifiers
499(2)
7.5 Ac-Side Inductance in Three-Phase Rectifier Circuits
501(24)
7.5.1 Half-Wave Rectifiers
501(5)
7.5.2 Full-Wave Bridge Rectifiers
506(4)
Problems
510(15)
8 Phase-Controlled Converters
525(50)
8.1 Introduction
525(1)
8.2 Basic Phase-Controlled Concepts
526(2)
8.3 Half-Wave Phase-Controlled Rectifiers
528(7)
8.3.1 Resistive Load
528(2)
8.3.2 Inductive Load
530(5)
8.4 Full-Wave Phase-Controlled Rectifiers
535(15)
8.4.1 Resistive Load
535(2)
8.4.2 Inductive Load
537(13)
8.5 Effect of AC-Side Inductance
550(7)
8.5.1 Half-Wave Circuits
550(2)
8.5.2 Full-Wave Rectifier Circuits
552(5)
8.6 Three-Phase Phase-Controlled Converters
557(18)
8.6.1 Half-Wave Converters
557(1)
8.6.2 Full-Wave Converters
557(9)
Problems
566(9)
9 dc-ac Inverters
575(88)
9.1 Basic Block Diagram of dc-ac Inverters
576(2)
9.1.1 Voltage- and Current-Source Inverters
577(1)
9.1.2 Inverter Configurations
578(1)
9.1.3 Output Voltage Control
578(1)
9.2 Basic Half-Bridge Inverter Circuit
578(15)
9.2.1 Resistive Load
578(5)
9.2.2 Inductive-Resistive Load
583(10)
9.3 Full-Bridge Inverters
593(16)
9.3.1 Approximate Analysis
599(1)
9.3.2 Generalized Analysis
600(9)
9.4 Harmonic Reduction
609(7)
9.4.1 Harmonic Analysis
610(6)
9.5 Pulse Width Modulation
616(24)
9.5.1 Equal-Pulse (Uniform) PWM
618(8)
9.5.2 Sinusoidal PWM
626(14)
9.6 Three-Phase Inverters
640(8)
9.7 Current-Source Inverters
648(15)
Problems
651(12)
Bibliography 663(4)
Index 667
Issa Batarseh received his Ph.D and M.S. in Electrical Engineering and B.S. in Computer Engineering and Science from the University of Illinois at Chicago in 1990, 85 and 83 respectively. In a career spanning nearly three decades in education and research, Professor Batarseh has served in numerous research, academic and administrative positions at the University of Central Florida (UCF) where he is currently a Professor of Electrical Engineering. He is also serving as the Director of Energy Systems Integration at the Florida Solar Energy Center. He has published more than 400 journal papers, conferences, books and book chapters. He had 31 issued US patents and has co-founded two companies. He is a Fellow of the Florida Inventors Hall of Fame and a fellow member in AAAS, IEEE, and IEE. He is also registered Professional Engineer (PE) in the state of Florida.

Ahmad M. Harb receive his Ph.D. degree from Virginia Tech., Virginia, USA, in 1996. Currently, he isa Professor at German Jordanian University (GJU), school of natural resources engineering. Dr. Harb is a IEEE senior member. Dr. Harb is the Editor-in-Chief for two international journals, IJMNTA and IJPRES. Dr. Harb served as the dean of the School of Natural Resources Engineering at GJU between 2011-2013. Dr. Harb has published more than 70 journal articles and conference proceedings. His research interests include power system, renewable energy and power electronics, modern nonlinear theory (bifurcation & chaos), nonlinear control..