Muutke küpsiste eelistusi

E-raamat: Power Electronics with MATLAB

  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Nov-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108662208
  • Formaat - PDF+DRM
  • Hind: 87,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Nov-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108662208

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An easy-to-understand guide covering the fundamentals of power electronics, with an emphasis on AC drives, semiconductors, power supplies, converters, and inverters. Additional useful features such as MATLAB® and simulation examples, and solved examples are offered in the text for better understanding.

This practically-oriented, all-inclusive guide covers the essential concepts of power electronics through MATLAB® examples and simulations. In-depth explanation of important topics including digital control, power electronic applications, and electrical drives make it a valuable reference for readers. The experiments and applications based on MATLAB® models using fuzzy logic and neural networks are included for better understanding. Engrossing discussion of concepts such as diac, light-emitting diode, thyristors, power MOSFET and static induction transistor, offers an enlightening experience to readers. With numerous solved examples, exercises, review questions, and GATE questions, the undergraduate and graduate students of electrical and electronics engineering will find this text useful.

Muu info

An easy-to-use guide examining the key principles of power electronics, focusing on MATLAB® examples, simulations, and applications.
Figures xv
Tables xxv
Acknowledgements xxvii
Preface xxix
1 Introduction to MATLAB
1.1 Introduction and Outlook
1(1)
1.2 How to Start with MATLAB?
2(2)
1.2.1 Installing and activation
3(1)
1.3 MATLAB: A Calculator
4(6)
1.3.1 Basic arithmetic operations
5(1)
1.3.2 Assigning values to variables
6(4)
1.4 Basic Features of MATLAB
10(16)
1.4.1 Investigation of a MATLAB function
10(1)
1.4.2 Mathematical functions
10(2)
1.4.3 Vector and matrix operations
12(9)
1.4.4 Arrays
21(3)
1.4.5 Basic plotting
24(2)
1.5 Programming with MATLAB
26(7)
1.5.1 Creating M-files
26(1)
1.5.2 M-file functions
27(1)
1.5.3 Control structures and operators
28(3)
1.5.4 Debugging M-files
31(1)
1.5.5 Creating plots
32(1)
1.6 Circuit Descriptions
33(12)
1.6.1 Format and layout
33(1)
1.6.2 Electrical circuit description
34(1)
1.6.3 Simulink library browser
34(5)
1.6.4 Circuit elements
39(2)
1.6.5 DC analysis
41(1)
1.6.6 AC analysis
42(3)
1.7 Examples of MATLAB Simulations
45(7)
1.7.1 Steady state analysis of a linear circuit
45(1)
1.7.2 Resonant switch converter using metal oxide semiconductor field effect transistor (MOSFET)
46(1)
1.7.3 Gate turn off (GTO) thyristor-based converter
47(2)
1.7.4 Regulation of zener diode
49(1)
1.7.5 Regulation of pulse generator using thyristor converter
50(2)
1.8 Other Types Circuit Simulators
52(2)
1.8.1 PSpice
52(1)
1.8.2 LabVIEW
52(1)
1.8.3 PSIM
52(1)
1.8.4 Scilab
53(1)
1.8.5 VisSim
53(1)
1.9 Merits and Demerits of MATLAB
54(1)
1.9.1 Merits
54(1)
1.9.2 Demerits
54(1)
Summary
54(1)
Review Questions
54(1)
Practice Questions
55(2)
Multiple Choice Questions
57(3)
2 MATLAB Simulation of Power Semiconductor Devices
2.1 Introduction and Outlook
60(1)
2.2 Why is Power Electronics Important?
61(1)
2.3 Features of Power Electronics
61(2)
2.4 Applications of Power Electronics
63(1)
2.5 Power Semiconductor Devices in MATLAB/Simulink
64(43)
2.5.1 Power diode and its characteristics
66(7)
2.5.2 Zener diode
73(2)
2.5.3 Fast recovery diode
75(1)
2.5.4 Thyristors
76(24)
2.5.5 Power MOSFET
100(2)
2.5.6 Gate turn off thyristors
102(3)
2.5.7 Insulated-gate bipolar transistor (IGBT)
105(2)
2.6 Other Semiconductor Devices
107(2)
2.6.1 DIAC
107(1)
2.6.2 TRIAC
107(1)
2.6.3 MOS controlled thyristor
108(1)
2.6.4 Integrated gate-commutated thyristors
108(1)
2.7 MATLAB/Simulink Model of Semiconductor Devices in Electronics
109(7)
2.7.1 Schottky diode
109(2)
2.7.2 Bipolar junction transistors
111(2)
2.7.3 MOSFET
113(1)
2.7.4 IGBT
114(2)
2.8 Gate Triggering Methods
116(4)
2.8.1 Resistance firing circuit
116(1)
2.8.2 Resistance-capacitance firing circuit
117(1)
2.8.3 UJT firing circuit
118(1)
2.8.4 Pulse transformers
119(1)
2.8.5 Optocoupler
119(1)
2.8.6 Ramp-pedestrial triggering
120(1)
2.9 Comparison of Power Semiconductor Devices with Industry Applications
120(5)
2.9.1 Other devices
122(3)
Summary
125(1)
Solved Examples
125(16)
Practice Questions
141(1)
Review Questions
142(1)
Multiple Choice Questions
143(3)
3 Phase-Controlled Rectifiers Using MATLAB (AC-DC Converters)
3.1 Introduction
146(1)
3.2 Rectification and Its Classification
147(6)
3.2.1 Based on control characteristics
147(5)
3.2.2 Based on period of conduction
152(1)
3.2.3 Based on number of phases
153(1)
3.2.4 Based on number of pulses
153(1)
3.3 Selection of Components from the Simulink Library Browser
153(2)
3.4 One Pulse Converters
155(8)
3.4.1 Single-phase half-wave-controlled rectifiers
155(8)
3.5 Two Pulse Converters
163(15)
3.5.1 Single-phase full-wave bridge rectifiers
163(6)
3.5.2 Single-phase midpoint bridge rectifiers
169(4)
3.5.3 Single-phase semiconverter half-controlled bridge rectifiers
173(5)
3.6 Three Pulse Converters
178(5)
3.6.1 Three-phase half-wave-controlled rectifiers
178(3)
3.6.2 Three-phase half-controlled bridge rectifier with RL load
181(2)
3.7 Six Pulse Converters
183(4)
3.7.1 Six pulse converter with R load
183(3)
3.7.2 Six pulse converter with RL load
186(1)
3.8 Dual Converter
187(1)
3.9 Role of Source Inductance in Rectifier Circuits
188(1)
3.10 Applications of Controlled Rectifiers
189(1)
Summary
189(1)
Solved Examples
189(11)
Objective Type Questions
200(3)
Review Questions
203(1)
Practice Questions
204(2)
4 DC Choppers Using MATLAB (DC-DC Converters)
4.1 Introduction
206(1)
4.2 Choppers and their Classification
207(1)
4.3 Control Strategies of Chopper
208(1)
4.3.1 Pulse width modulation or constant frequency system
208(1)
4.3.2 Variable frequency control or frequency modulation
208(1)
4.3.3 Current limit control
209(1)
4.4 Selection of Components from the Simulink Library Browser
209(2)
4.5 Principle of Operation of a Step-down Chopper
211(1)
4.6 Principle of Operation of a Step-up Chopper
212(1)
4.7 Performance Parameters of Step-up and Step-down Choppers
213(2)
4.8 Chopper Configuration
215(11)
4.8.1 Type A chopper
216(1)
4.8.2 Type B chopper
217(3)
4.8.3 Type C chopper (regenerative chopper)
220(2)
4.8.4 Type D chopper
222(2)
4.8.5 Type E chopper
224(2)
4.9 Switching Mode Regulators
226(5)
4.9.1 Buck converter
226(2)
4.9.2 Boost converter
228(2)
4.9.3 Buck-boost converter
230(1)
4.9.4 Cuk converter
231(1)
4.10 Chopper Commutation
231(6)
4.10.1 Voltage-commutated chopper
231(3)
4.10.2 Current-commutated chopper
234(2)
4.10.3 Load-commutated chopper
236(1)
4.11 Jones Chopper
237(1)
4.12 Morgan Chopper
238(1)
4.13 AC Choppers
239(1)
4.14 Source Filter
239(1)
4.15 Multiphase Chopper
240(1)
4.16 Applications of Choppers
240(1)
Summary
241(1)
Solved Problems
241(10)
Objective Type Questions
251(2)
Review Questions
253(1)
Practice Questions
254(2)
5 Inverters Using MATLAB (DC-DC Converters)
5.1 Introduction
256(1)
5.2 Invetters and their Classification
257(1)
5.2.1 Classification based on input source
257(1)
5.2.2 Classification based on output voltage
257(1)
5.2.3 Classification based on technique for substitution
258(1)
5.2.4 Classification based on associations with other devices
258(1)
5.3 Selection of Components from Simulink Library Browser
258(2)
5.4 Voltage Source Inverters
260(5)
5.4.1 Single-phase voltage source inverters
260(5)
5.5 Performance Parameters of Inverters
265(1)
5.6 McMurray Inverter (Auxiliary-Commutated Inverter)
266(1)
5.7 Modified McMurray Half-Bridge and Full-Bridge Inverter
267(3)
5.7.1 Modified McMurray half-bridge inverter
269(1)
5.7.2 Modified McMurray full-bridge inverter
270(1)
5.8 PWM Inverters
270(3)
5.8.1 Single pulse width modulation
271(1)
5.8.2 Multiple pulse width modulation
271(2)
5.9 Three-Phase Bridge Inverter
273(2)
5.9.1 180° Conduction mode
273(1)
5.9.2 120° Conduction mode
274(1)
5.10 Current Source Inverters
275(2)
5.10.1 Single-phase capacitor-commutated current source inverter with R load
275(2)
5.11 Resonant Converters
277(3)
5.11.1 Series resonant converters
277(2)
5.11.2 Parallel resonant converters
279(1)
5.11.3 ZVS and ZCS PWM converters
280(1)
5.12 Applications of Inverters
280(1)
Summary
281(1)
Solved Problems
281(2)
Objective Type Questions
283(5)
Review Questions
288(1)
Practice Questions
288(2)
6 Controllers Using MATLAB (AC-AC Converters)
6.1 Introduction
290(1)
6.1.1 ON-OFF control
291(1)
6.1.2 Phase control
291(1)
6.2 Classification of AC Voltage Controllers
291(1)
6.3 Single-Phase AC Voltage Controllers
292(10)
6.3.1 Single-phase half-wave AC voltage controller with R load
293(3)
6.3.2 Single-phase full-wave AC voltage controller with R load
296(3)
6.3.3 Single-phase full-wave AC voltage controller with RL load
299(3)
6.4 Cycloconverters and Its Types
302(15)
6.4.1 Single-phase cycloconverters
303(4)
6.4.2 Three-phase cycloconverters
307(10)
6.5 Load-Commutated Cycloconverter
317(1)
6.6 Matrix Converter
317(2)
6.7 Applications of Voltage Controllers
319(1)
Summary
319(1)
Solved Problems
319(15)
Objective Type Questions
334(2)
Review Questions
336(1)
Practice Questions
337(2)
7 Simulation and Digital Control Using MATLAB
7.1 Introduction
339(2)
7.2 Fuzzy Logic Principles
341(11)
7.2.1 Fuzzy logic tool box
341(5)
7.2.2 Implementation
346(1)
7.2.3 Description and design of FLC
347(3)
7.2.4 Simulation and results
350(2)
7.3 Neural Network Principles
352(10)
7.3.1 Background of neural networks
353(2)
7.3.2 Implementation
355(2)
7.3.3 Algorithm for ANN
357(2)
7.3.4 Simulation results
359(3)
7.4 Converter Control Using Microprocessors and Microcontrollers
362(1)
Summary
363(1)
Solved Examples
363(3)
Practice Questions
366(1)
Review Questions
367(1)
Multiple Choice Questions
367(5)
8 Power Electronics Applications
8.1 Introduction
372(1)
8.2 Uninterruptible Power Supply (UPS)
373(4)
8.2.1 Static systems
373(4)
8.3 Switch-Mode Power Supply
377(3)
8.3.1 Forward-mode SMPS
378(1)
8.3.2 Flyback-mode SMPS
378(2)
8.4 High-Voltage DC Transmission
380(1)
8.5 VAR Compensators
380(2)
8.6 Battery Charger
382(1)
8.7 Switch-Mode Welding
383(1)
8.8 RF Heating
383(1)
8.9 Electronic Ballast
383(1)
8.9.1 Characteristics of fluorescent lamps
383(1)
8.10 Brushless DC (BLDC) Motors
384(1)
8.11 Thermal Management and Heat Sinks
385(1)
Summary
385(1)
Multiple Choice Questions
385(2)
Review Questions
387(1)
Practice Questions
387(1)
9 Introduction to Electrical Drives
9.1 Introduction
388(2)
9.1.1 Merits and demerits of electrical drive systems
389(1)
9.2 DC Drives
390(14)
9.2.1 Steady-state operation of a separately excited DC motor
390(4)
9.2.2 Four quadrant operation
394(2)
9.2.3 Single-phase and three-phase DC drive
396(5)
9.2.4 Reversal of DC motor
401(1)
9.2.5 DC chopper drives
402(2)
9.3 AC Drives
404(5)
9.3.1 Induction motor drive
404(5)
9.4 Synchronous Motor Drive
409(2)
9.5 Phase-Locked Loop (PLL)
411(1)
Summary
411(1)
Solved Problems
411(3)
Objective Type Questions
414(3)
Review Questions
417(1)
Practice Questions
418(1)
Appendix 1 Block Parameter Settings 419(3)
Appendix 2 List of MATLAB Projects 422(10)
Appendix 3 MATLAB Functions 432(9)
Appendix 4 Useful Formulae 441(33)
Appendix 5 Table of Laplace and Z Transforms 474(4)
Appendix 6 Gate Questions 478(33)
Resources for MATLAB 511(2)
Index 513
L. Ashok Kumar is presently working as Professor in the Department of Electrical and Electronics Engineering at PSG College of Technology, Coimbatore. He has completed his Ph.D. from Anna University, Chennai in the field of Wearable Electronics. He has been selected as the Visiting Professor in the University of Arkansas. He was trained in Germany for installing Grid connected and stand alone Solar PV systems. He has contributed a number of articles in national and international journals. His areas of interest include wearable electronics, power electronics and drives, and renewable energy systems. A. Kalaiarasi is currently working as an Assistant Professor in the Department of Electrical and Electronics Engineering, RVS College of Engineering and Technology, Coimbatore. She obtained her M.E. degree in Power Electronics and Drives from Government College of Technology, Coimbatore. Her areas of interest are medical instrumentation, power electronics and drives, big data analytics, embedded system technologies and industrial automation. Y. Uma Maheswari is serving as Technology Manager at Pramura Software Private Limited, Coimbatore. She has completed her M.E. in the field of Embedded System Technologies from Anna University, Coimbatore and holds around fifteen years of industrial experience. Her expertise is in PCB designing and simulation software.