Muutke küpsiste eelistusi

E-raamat: Power Electronics for the Next Generation Wind Turbine System

  • Formaat: PDF+DRM
  • Sari: Research Topics in Wind Energy 5
  • Ilmumisaeg: 25-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319212487
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Research Topics in Wind Energy 5
  • Ilmumisaeg: 25-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319212487

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems as well as possibilities for the wind power conversion, and may be useful as an inspiring reference for the researchers in this field.

Part I Monograph.- Part II Selected Papers Written by Author.
Part I Monograph
1 Introduction
3(16)
1.1 State-of-the-Art for Wind Power Generation
3(2)
1.2 Development of Wind Power Technologies
5(3)
1.2.1 Evolution of Wind Turbine Concepts
5(3)
1.2.2 Evolution of Power Electronics for Wind Turbines
8(1)
1.3 Emerging Challenges for Wind Power Converter
8(7)
1.3.1 More Grid Supports
8(3)
1.3.2 Higher Reliability
11(2)
1.3.3 Special Cost Considerations
13(1)
1.3.4 Formulation of Overall Requirements
14(1)
1.4 Scopes of the Book
15(4)
References
16(3)
2 Promising Topologies and Power Devices for Wind Power Converter
19(12)
2.1 Promising Converter Topologies
19(7)
2.1.1 Traditional Two-Level Converters
19(2)
2.1.2 Multilevel Converters
21(2)
2.1.3 Multi-cell Converters
23(3)
2.2 Potential Power Semiconductor Devices
26(1)
2.3 Summary
27(4)
References
27(4)
3 Criteria and Tools for Evaluating Wind Power Converter
31(14)
3.1 Importance of Thermal Stress in Wind Power Converter
31(6)
3.1.1 Thermal Stress Versus Reliability
32(2)
3.1.2 Thermal Stress Versus Cost
34(3)
3.2 Classification and Approach for the Thermal Stress Analysis
37(5)
3.2.1 Classification of Thermal Stress in Wind Power Converter
37(1)
3.2.2 Methods and Models for Stress Analysis
38(4)
3.3 Summary
42(3)
References
42(3)
4 Thermal Stress of 10-MW Wind Power Converter Under Normal Operation
45(18)
4.1 Requirements and Conditions Under Normal Operation
45(2)
4.2 Stress of Converter Imposed by Wind Speeds
47(4)
4.2.1 Thermal Stress Under Steady-State Wind Speeds
47(3)
4.2.2 Thermal Stress Under Wind Speed Variations
50(1)
4.3 Stress of Converter Imposed by Grid Codes
51(4)
4.3.1 Converter Efficiency Considering Reactive Power Demands by Grid Codes
51(2)
4.3.2 Thermal Stress Considering Reactive Power Demands by Grid Codes
53(2)
4.4 A Thermal Control Method Utilizing Reactive Power
55(5)
4.4.1 Control Idea and Diagram
55(1)
4.4.2 Idea to Overcome the Reactive Power Limits
56(1)
4.4.3 Thermal Stress Considering Extended Q Ranges in Paralleled Converters
57(1)
4.4.4 Thermal Control Results
57(3)
4.5 Summary
60(3)
References
61(2)
5 Stress Analysis of 3L-NPC Wind Power Converter Under Fault Condition
63(32)
5.1 Requirements and Conditions Under Fault Operation
63(4)
5.2 Stress Analysis of Converter Under LVRT
67(4)
5.2.1 Electrical Behaviors
67(3)
5.2.2 Thermal Behaviors
70(1)
5.3 Thermal Redistributed Modulations Under LVRT
71(9)
5.3.1 Basic Idea
71(3)
5.3.2 A Group of Modulation Methods
74(3)
5.3.3 Loss and Thermal Improvements
77(2)
5.3.4 Neutral Point Potential Control and Total Harmonic Distortion
79(1)
5.4 New Power Control Methods Under Unbalanced AC Source
80(11)
5.4.1 Applicable Conditions and Control Structure
81(1)
5.4.2 Control Ideas and Methods
82(9)
5.5 Summary
91(4)
References
92(3)
6 Conclusions and Future Works
95(4)
6.1 Conclusions
95(2)
6.2 Proposals for Future Research Topics
97(2)
7 Appendix
99(8)
7.1 Used Models for Analysis
99(4)
7.1.1 Wind Speed Generator
99(1)
7.1.2 Wind Turbine Model
99(2)
7.1.3 Generator Model
101(1)
7.1.4 Parameter for Thermal Impedance of Used IGCT
101(2)
7.2 Experimental Setup
103(4)
Part II Specially Selected Topics
8 The Impacts of Power Switching Devices to the Thermal Performances of 10 MW Wind Power NPC Converter
107(16)
8.1 Wind Power Converter for Case Study
107(1)
8.2 Thermal-Related Characteristics of Different Power Switching Devices
108(4)
8.2.1 Switching Loss
109(1)
8.2.2 Conduction Voltage and Loss
110(2)
8.2.3 Thermal Resistance
112(1)
8.3 Thermal Analysis of Different Device Solutions
112(9)
8.3.1 Normal Operation
113(2)
8.3.2 Low-Voltage-Ride-Through Operation
115(5)
8.3.3 Wind Gust Operation
120(1)
8.3.4 Summary of Thermal Performances Under Different Operation Modes
121(1)
8.4 Conclusions
121(2)
References
122(1)
9 Reliability-Cost Models for the Power Switching Devices of Wind Power Converters
123(16)
9.1 Loss Model with Chip Number Information
124(5)
9.2 Thermal Impedance Model with Chip Number Information
129(4)
9.3 Analytical Solution of Junction Temperature with Chip Number Information
133(4)
9.4 Conclusions
137(2)
References
138(1)
10 Electro-Thermal Model of Power Semiconductors Dedicated for Both Case and Junction Temperature Estimation
139(6)
10.1 Conclusion
143(2)
References
143(2)
11 Reactive Power Influence on the Thermal Cycling of Multi-MW Wind Power Inverter
145(14)
11.1 Effect of Reactive Power in Case of Single Converter
146(6)
11.2 Effect of Reactive Power in Case of Paralleled Converters
152(5)
11.3 Conclusions
157(2)
References
157(2)
12 Thermal Loading of Several Multilevel Converter Topologies for 10 MW Wind Turbines Under Low Voltage Ride Through
159(22)
12.1 Promising Topologies and Basic Design
159(2)
12.2 Operation Status Under Balanced LVRT
161(3)
12.3 Loss Distribution Under Balanced LVRT
164(2)
12.4 Thermal Distribution Under Balanced LVRT
166(5)
12.5 Unbalanced LVRT
171(8)
12.6 Conclusion
179(2)
13 Another Groups of Thermal Optimized Modulation Methods of Three-Level Neutral-Point-Clamped Inverter Under Low Voltage Ride Through
181(8)
13.1 Basic Principles
181(2)
13.2 Neutral Point Potential Control Method
183(2)
13.3 Loss and Thermal Performances
185(2)
13.4 Conclusions
187(2)
14 Limits of the Power Controllability of Three-Phase Converter with Unbalanced AC Source
189
14.1 Conclusion
196