Muutke küpsiste eelistusi

E-raamat: Power Electronics Step-by-Step: Design, Modeling, Simulation, and Control

  • Formaat: 352 pages
  • Ilmumisaeg: 05-Feb-2021
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260456981
  • Formaat - EPUB+DRM
  • Hind: 112,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 352 pages
  • Ilmumisaeg: 05-Feb-2021
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260456981

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

Explore the latest power electronics principles, practices, and applications

This electrical engineering guide offers comprehensive coverage of design, modeling, simulation, and control for power electronics. The book describes real-world applications for the technology and features case studies worked out in both MATLAB and Simulink. Presented in an accessible style, Power Electronics Step-by-Step: Design, Modeling, Simulation, and Control focuses on the latest technologies, such as DC-based systems, and emphasizes the averaging technique for both simulation and modeling. You will get photos, diagrams, flowcharts, graphs, equations, and tables that illustrate each topic.

  • Circuit components
  • Non-isolated DC/DC conversion
  • Power analysis
  • DC to single-phase AC conversion
  • Single-phase AC to DC conversion
  • Galvanic isolated DC/DC conversion
  • Power conversion for three-phase AC
  • Bidirectional power conversion
  • Averaging model for simulation
  • Dynamic modeling of DC/DC converters
  • Regulation of voltage and current




Preface xvii
1 Background
1(22)
1.1 Classification of Power Conversion
2(2)
1.2 Interdisciplinary Nature of Power Electronics
4(1)
1.3 Typical Applications
5(1)
1.4 Tools for Development
6(3)
1.4.1 Electrical Computer-Aided Design
6(2)
1.4.2 Simulation
8(1)
1.5 Ideal Power Conversion
9(1)
1.6 AC and DC
10(4)
1.6.1 Single-Phase AC
10(1)
1.6.2 Three-Phase AC
11(3)
1.7 Galvanic Isolation
14(1)
1.8 Fundamental Magnetics
15(6)
1.8.1 Physical Laws
15(1)
1.8.2 Permeability and Inductance
16(2)
1.8.3 Magnetic Core and Inductor Design
18(2)
1.8.4 Power Transformer
20(1)
1.9 Loss-Free Power Conversion
21(2)
Bibliography
22(1)
Problems
22(1)
2 Circuit Elements
23(28)
2.1 Linear Voltage Regulator by BJT
23(3)
2.1.1 Series Voltage Regulator
24(1)
2.1.2 Shunt Voltage Regulator
25(1)
2.2 Diode and Passive Switch
26(3)
2.3 Active Switches
29(7)
2.3.1 Bipolar Junction Transistor
29(1)
2.3.2 Field Effect Transistor
30(2)
2.3.3 Insulated Gate Bipolar Transistor
32(2)
2.3.4 Thyristor
34(1)
2.3.5 Switch Selection
35(1)
2.4 Bridge Circuits
36(2)
2.4.1 Number of Switches
37(1)
2.4.2 Active, Passive, or Hybrid Bridges
37(1)
2.5 Power Capacitors
38(3)
2.5.1 Aluminum Electrolytic Capacitors
39(1)
2.5.2 Other Types of Capacitors
40(1)
2.5.3 Selection and Configuration
40(1)
2.6 Passive Components
41(2)
2.7 Circuits for Low-Pass Filtering
43(4)
2.8 Summary
47(4)
Bibliography
48(1)
Problems
49(2)
3 Non-Isolated DC/DC Conversion
51(46)
3.1 Pulse Width Modulation
51(3)
3.1.1 Analog PWM
51(2)
3.1.2 Digital PWM
53(1)
3.2 Operational Condition
54(1)
3.2.1 Steady State
54(1)
3.2.2 Nominal Operating Condition
55(1)
3.3 Buck Converter
55(12)
3.3.1 Steady-State Analysis
57(1)
3.3.2 Continuous Conduction Mode
58(1)
3.3.3 Discontinuous Conduction Mode
59(1)
3.3.4 Boundary Conduction Mode
60(1)
3.3.5 Case Study and Circuit Design
61(2)
3.3.6 Simulation of Buck Converter for Concept Proof
63(4)
3.4 Boost Converter
67(9)
3.4.1 Steady-State Analysis
67(2)
3.4.2 Continuous Conduction Mode
69(1)
3.4.3 Boundary Conduction Mode
69(1)
3.4.4 Discontinuous Conduction Mode
70(2)
3.4.5 Circuit Design and Case Study
72(1)
3.4.6 Simulation and Concept Proof
73(3)
3.5 Non-Inverting Buck-Boost Converter
76(3)
3.6 Buck-Boost Converter: Inverting Version
79(6)
3.6.1 Steady-State Analysis
79(1)
3.6.2 Continuous Conduction Mode
80(1)
3.6.3 Boundary Conduction Mode
80(1)
3.6.4 Discontinuous Conduction Mode
81(1)
3.6.5 Circuit Design and Case Study
82(1)
3.6.6 Simulation and Concept Proof
83(2)
3.7 Cuk Converter
85(7)
3.7.1 Steady-State Analysis
86(2)
3.7.2 Specification and Circuit Design
88(1)
3.7.3 Modeling for Simulation
89(3)
3.8 Synchronous Switching
92(1)
3.9 Summary
92(5)
Bibliography
94(1)
Problems
94(3)
4 Computation and Analysis
97(26)
4.1 Root Mean Square
97(4)
4.1.1 DC Waveforms
99(2)
4.1.2 AC Waveforms
101(1)
4.2 Loss Analysis and Reduction
101(5)
4.2.1 Conduction Loss
102(1)
4.2.2 Switching Loss
102(2)
4.2.3 Cause of Switching Delay
104(1)
4.2.4 Minimization of Switching Loss
104(2)
4.3 Gate Driver
106(4)
4.3.1 Low-Side Gate Driver
107(1)
4.3.2 High-Side Gate Driver
108(1)
4.3.3 Half-Bridge Driver
109(1)
4.4 Fourier Series
110(1)
4.5 Power Quality of AC
110(4)
4.5.1 Displacement Power Factor
111(1)
4.5.2 Total Harmonic Distortion
112(2)
4.6 Power Quality of DC
114(2)
4.7 Thermal Stress and Analysis
116(2)
4.8 Summary
118(5)
Bibliography
118(1)
Problems
119(4)
5 DC to Single-Phase AC Conversion
123(20)
5.1 Square Wave AC
124(5)
5.1.1 Chopping
125(1)
5.1.2 Phase Shift and Modulation
125(3)
5.1.3 Total Harmonic Distortion
128(1)
5.2 Sine-Triangle Modulation
129(5)
5.2.1 Bipolar Pulse Width Modulation
129(2)
5.2.2 Unipolar Pulse Width Modulation
131(2)
5.2.3 Moving Average and Filtering Circuit
133(1)
5.3 Two-Switch Bridge for DC/AC
134(1)
5.4 Modeling for Simulation
135(3)
5.4.1 Bridge Model
135(1)
5.4.2 Phase Shift Modulation
136(1)
5.4.3 Bipolar Pulse Width Modulation
136(1)
5.4.4 Unipolar Pulse Width Modulation
137(1)
5.4.5 Integrated Modes for Simulation
137(1)
5.5 Case Study
138(2)
5.5.1 Chopped Square AC Output
138(1)
5.5.2 Sinusoidal AC Output
139(1)
5.6 Summary
140(3)
Bibliography
141(1)
Problems
141(2)
6 Single-Phase AC to DC Conversion
143(24)
6.1 Half-Wave Rectification
143(2)
6.1.1 Capacitor for Filtering
144(1)
6.1.2 Case Study
145(1)
6.2 Full-Wave Bridge Rectifier
145(8)
6.2.1 Capacitor for Filtering
146(2)
6.2.2 Inductor for Filtering
148(2)
6.2.3 LC Filter
150(3)
6.3 Active Rectifier
153(2)
6.4 Alternative Configuration
155(2)
6.4.1 Synchronous Rectifier
155(1)
6.4.2 Center-Tapped Transformer
156(1)
6.5 Modeling for Simulation
157(7)
6.5.1 C Filter for One-Diode Rectifier
157(1)
6.5.2 Full-Wave Rectifier without Filtering
158(1)
6.5.3 Full-Wave Rectifier with C Filtering
159(2)
6.5.4 Full-Wave Rectifier with L Filter
161(1)
6.5.5 Full-Wave Rectifier with LC Filter
161(2)
6.5.6 Active Rectifier
163(1)
6.6 Summary
164(3)
Bibliography
165(1)
Problems
165(2)
7 Isolated DC/DC Conversion
167(30)
7.1 Region of Magnetic Field
167(2)
7.1.1 Operational Quadrant and Classification
168(1)
7.1.2 Critical Checkpoint for Saturation
169(1)
7.2 Flyback Topology
169(8)
7.2.1 Derivation from Buck-Boost Converter
170(1)
7.2.2 Flyback Operation
171(1)
7.2.3 Continuous Conduction Mode
172(1)
7.2.4 Discontinuous Conduction Mode
173(1)
7.2.5 Circuit Specification and Design
174(1)
7.2.6 Simulation for Concept Proof
175(2)
7.3 Forward Converter
177(6)
7.3.1 Two-End-Switching Topology
177(3)
7.3.2 One-Transistor Solution
180(1)
7.3.3 Circuit Specification and Design
181(1)
7.3.4 Simulation for Concept Proof
182(1)
7.4 Synchronous Rectification
183(2)
7.5 Full Bridge for DC/AC Stage
185(4)
7.5.1 Steady-State Analysis
186(1)
7.5.2 Circuit Specification and Design
187(1)
7.5.3 Simulation for Concept Proof
188(1)
7.6 Push-Pull Converters
189(2)
7.7 Variation and Enhancement
191(1)
7.8 Summary
192(5)
Bibliography
194(1)
Problems
194(3)
8 Conversion Between Three-Phase AC and DC
197(22)
8.1 DC/AC Conversion
197(10)
8.1.1 Bridge and Switching Operation
197(3)
8.1.2 180° Modulation
200(2)
8.1.3 Sine-Triangle Modulation
202(2)
8.1.4 Modeling for Simulation
204(1)
8.1.5 Case Study and Simulation Result
205(2)
8.2 AC/DC Conversion
207(7)
8.2.1 Passive Rectifier for Three Pulses per Cycle
207(2)
8.2.2 Passive Rectifier for Six Pulses per Cycle
209(1)
8.2.3 Passive Rectifier for 12 Pulses per Cycle
210(1)
8.2.4 Active Rectifier
211(2)
8.2.5 Simulation
213(1)
8.3 AC/AC Conversion
214(2)
8.4 Summary
216(3)
Bibliography
216(1)
Problems
217(2)
9 Bidirectional Power Conversion
219(22)
9.1 Non-Isolated DC/DC Conversion
219(2)
9.2 Dual Active Bridge
221(15)
9.2.1 Forward Power Flow
222(3)
9.2.2 Reverse Power Flow
225(2)
9.2.3 Zero-Voltage Switching
227(4)
9.2.4 Losing Zero-Voltage Switching
231(2)
9.2.5 Critical Phase Shift for ZVS
233(2)
9.2.6 Simulation and Case Study
235(1)
9.3 Conversion Between DC and AC
236(2)
9.3.1 Between DC and Single-Phase AC
237(1)
9.3.2 Between DC and Three-Phase AC
237(1)
9.4 Summary
238(3)
Bibliography
239(1)
Problems
239(2)
10 Averaging for Modeling and Simulation
241(18)
10.1 Switching Dynamics
241(1)
10.2 Continuous Conduction Mode
242(7)
10.2.1 Buck Converter
242(2)
10.2.2 Dynamic Analysis of Second-Order Systems
244(2)
10.2.3 Boost Converter
246(1)
10.2.4 Buck-Boost Converter
247(2)
10.3 Discontinuous Conduction Mode
249(3)
10.3.1 Buck Converter
249(1)
10.3.2 Boost Converter
250(1)
10.3.3 Buck-Boost Converter
251(1)
10.4 Integrated Simulation Model
252(4)
10.4.1 Buck Converter
252(1)
10.4.2 Boost Converter
253(2)
10.4.3 Buck-Boost Converter
255(1)
10.5 Summary
256(3)
Bibliography
257(1)
Problems
257(2)
11 Linearized Model for Dynamic Analysis
259(16)
11.1 General Linearization
259(2)
11.2 Linearization of Dual Active Bridge
261(2)
11.3 Linearization Based on CCM
263(8)
11.3.1 Boost Converter
263(3)
11.3.2 Buck-Boost Converter
266(3)
11.3.3 Non-Minimal Phase
269(2)
11.4 Linearization Based on DCM
271(1)
11.5 Summary
271(4)
Bibliography
272(1)
Problems
273(2)
12 Control and Regulation
275(32)
12.1 Stability and Performance
275(1)
12.2 On/Off Control
276(3)
12.2.1 Hysteresis Control
277(1)
12.2.2 Case Study and Simulation
278(1)
12.3 Affine Parameterization
279(7)
12.3.1 Design Procedure
280(1)
12.3.2 Desired Closed Loop
281(1)
12.3.3 Derivation of Q(s) and C(s)
282(1)
12.3.4 Relative Stability and Robustness
283(3)
12.4 Controller Implementation
286(7)
12.4.1 Digital Control
286(2)
12.4.2 PID Controllers
288(1)
12.4.3 Analog Control
289(1)
12.4.4 Case Study for Buck Converter
290(2)
12.4.5 Case Study for Boost Converter
292(1)
12.5 Cascade Control
293(3)
12.5.1 Case Study and Simulation
294(1)
12.5.2 Advantage
295(1)
12.6 Windup Effect and Prevention
296(3)
12.6.1 Case Study and Simulation
296(1)
12.6.2 Anti-Windup
297(2)
12.7 Sensing and Measurement
299(4)
12.7.1 Voltage Sensing and Conditioning
300(2)
12.7.2 Current Sensing and Conditioning
302(1)
12.8 Summary
303(4)
Bibliography
304(1)
Problems
305(2)
Acronyms 307(4)
Index 311
Weidong Xiao is Associate Professor at University of Sydney, Department of Engineering and Information Technologies, Center for Future Energy Networks. His research involves modeling, design, simulation, and control of power electronics with focus of photovoltaic power systems. Weidong has authored one book and hundreds of technical papers and is on an editorial board at IEEE