Muutke küpsiste eelistusi

E-raamat: Power System Operations

  • Formaat - EPUB+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook provides a detailed description of operation problems in power systems, including power system modeling, power system steady-state operations, power system state estimation, and electricity markets. The book provides an appropriate blend of theoretical background and practical applications, which are developed as working algorithms, coded in Octave (or Matlab) and GAMS environments. This feature strengthens the usefulness of the book for both students and practitioners. Students will gain an insightful understanding of current power system operation problems in engineering, including: (i) the formulation of decision-making models, (ii) the familiarization with efficient solution algorithms for such models, and (iii) insights into these problems through the detailed analysis of numerous illustrative examples. The authors use a modern, “building-block” approach to solving complex problems, making the topic accessible to students with limited background in power systems. Solved examples are used to introduce new concepts and each chapter ends with a set of exercises.

1 Power Systems
1(16)
1.1 Introduction
1(1)
1.2 Power System Structure
1(8)
1.2.1 Physical Layer
1(4)
1.2.2 Economic Layer
5(2)
1.2.3 Regulatory Layer
7(2)
1.3 Power System Operations
9(1)
1.3.1 Day-Ahead Operation
9(1)
1.3.2 Hours Before Power Delivery
10(1)
1.3.3 Minutes Before Power Delivery
10(1)
1.4 Power Markets
10(2)
1.4.1 Futures Market
11(1)
1.4.2 Pool
11(1)
1.5 Scope of the Book
12(2)
1.5.1 What We Do
13(1)
1.5.2 What We Do Not Do
13(1)
1.6 End-of-Chapter Exercises
14(3)
References
14(3)
2 Power System Fundamentals: Balanced Three-Phase Circuits
17(38)
2.1 Introduction
17(1)
2.2 Balanced Three-Phase Sequences
18(3)
2.3 Balanced Three-Phase Voltages and Currents
21(21)
2.3.1 Balanced Three-Phase Voltages
21(2)
2.3.2 Balanced Three-Phase Currents
23(5)
2.3.3 Equivalence Wye-Delta
28(10)
2.3.4 Common Star Connection
38(4)
2.4 Instantaneous, Active, Reactive, and Apparent Power
42(2)
2.4.1 Definitions
42(2)
2.4.2 How to Measure Power?
44(1)
2.5 Why Three-Phase Power?
44(2)
2.6 Per-Unit System
46(6)
2.6.1 Motivation
46(1)
2.6.2 Per-Unit System Definition
46(2)
2.6.3 Definition of Base Values
48(3)
2.6.4 Per-Unit Analysis Procedure
51(1)
2.7 Summary and Further Reading
52(1)
2.8 End-of-Chapter Exercises
52(3)
References
54(1)
3 Power System Components: Models
55(42)
3.1 Introduction
55(1)
3.2 Generator and Motor
56(2)
3.2.1 Three-Phase Generator
56(1)
3.2.2 Three-Phase Motor
57(1)
3.3 Power Transformer
58(10)
3.3.1 Definitions
59(2)
3.3.2 Connections of a Three-Phase Power Transformer
61(5)
3.3.3 Per-Unit Analysis
66(1)
3.3.4 Model of a Three-Phase Power Transformer
67(1)
3.4 Load
68(3)
3.4.1 Constant-Impedance Load
69(1)
3.4.2 Induction Motor
69(2)
3.4.3 Load with Constant Power
71(1)
3.4.4 Load with Constant Voltage
71(1)
3.5 Electrical Line
71(12)
3.5.1 Equivalent Circuit
71(4)
3.5.2 Parameters of Electrical Lines
75(5)
3.5.3 Efficiency and Regulation
80(1)
3.5.4 Active and Reactive Power Decoupling
81(2)
3.6 Power System Examples
83(11)
3.7 Summary and Further Reading
94(1)
3.8 End-of-Chapter Exercises
94(3)
References
96(1)
4 Power Flow
97(40)
4.1 Introduction
97(1)
4.2 Nodal Equations
98(3)
4.2.1 Two-Node Power System
98(2)
4.2.2 n-Node Power System
100(1)
4.3 Admittance Matrix
101(3)
4.3.1 Two-Node Power System
102(1)
4.3.2 n-Node Power System
102(2)
4.4 Power Flow Equations
104(5)
4.4.1 Two-Node Power System
104(3)
4.4.2 n-Node Power System
107(2)
4.5 Slack, PV, and PQ Nodes
109(1)
4.6 Solution
110(4)
4.6.1 Direct Solution
110(1)
4.6.2 Newton-Raphson Method
111(3)
4.6.3 Software Tools
114(1)
4.7 Outcome
114(5)
4.8 Decoupled Power Flow
119(1)
4.9 Distributed Slack
120(1)
4.10 dc Power Flow
121(9)
4.10.1 Two-Node Power System
121(4)
4.10.2 n-Node Power System
125(5)
4.11 Summary and Further Reading
130(1)
4.12 Octave Codes
130(2)
4.12.1 Calling Subroutine
131(1)
4.12.2 Power Flow Function
131(1)
4.13 End-of-Chapter Exercises
132(5)
References
135(2)
5 Power System State Estimation
137(28)
5.1 Introduction
137(1)
5.2 Measurements
138(2)
5.3 Estimation
140(5)
5.4 Observability
145(7)
5.5 Erroneous Measurement Detection
152(2)
5.6 Erroneous Measurement Identification
154(4)
5.7 Summary and Further Reading
158(1)
5.8 GAMS and Octave Codes
158(2)
5.8.1 Estimation Example in GAMS
158(1)
5.8.2 Observability Example in Octave
159(1)
5.8.3 Erroneous Measurement Detection Example in Octave
160(1)
5.9 End-of-Chapter Exercises
160(5)
References
163(2)
6 Optimal Power Flow
165(32)
6.1 Introduction
165(1)
6.2 Optimal Power Flow
166(13)
6.2.1 Description
166(4)
6.2.2 Formulation
170(1)
6.2.3 Solution
171(6)
6.2.4 dc Formulation
177(2)
6.3 Security-Constrained Optimal Power Flow
179(6)
6.3.1 Description
180(1)
6.3.2 Formulation
180(5)
6.4 Summary and Further Reading
185(1)
6.5 GAMS Codes
185(9)
6.5.1 Simple OPF Code
186(1)
6.5.2 Generic OPF Code
187(2)
6.5.3 dc OPF Code
189(1)
6.5.4 SCOPF GAMS Code
190(4)
6.6 End-of-Chapter Exercises
194(3)
References
196(1)
7 Unit Commitment and Economic Dispatch
197(36)
7.1 Introduction
197(1)
7.2 Unit Commitment
198(11)
7.2.1 Description
198(6)
7.2.2 Formulation
204(5)
7.3 Economic Dispatch
209(7)
7.3.1 Economic Dispatch Without Network Constraints
209(2)
7.3.2 Economic Dispatch Considering Network Constraints
211(5)
7.4 Network-Constrained Unit Commitment
216(6)
7.5 Summary and Further Reading
222(1)
7.6 GAMS Codes
222(6)
7.6.1 Unit Commitment
223(2)
7.6.2 Economic Dispatch
225(1)
7.6.3 Network-Constrained Unit Commitment
226(2)
7.7 End-of-Chapter Exercises
228(5)
References
232(1)
8 Self-Scheduling and Market Clearing Auction
233(38)
8.1 Introduction
233(1)
8.2 Self-Scheduling
234(8)
8.2.1 Description
234(1)
8.2.2 Notation
235(1)
8.2.3 Formulation
236(6)
8.3 Market Clearing Auction
242(20)
8.3.1 Market Participants
242(1)
8.3.2 Production Offer Curves
243(1)
8.3.3 Consumption Bid Curves
244(1)
8.3.4 Social Welfare
244(2)
8.3.5 Formulation
246(16)
8.4 Summary and Further Reading
262(1)
8.5 GAMS Codes
262(5)
8.5.1 Self-Scheduling
263(1)
8.5.2 Market Clearing Auction
264(3)
8.6 End-of-Chapter Exercises
267(4)
References
269(2)
Appendix A Solving Systems of Nonlinear Equations
271(10)
A.1 Newton-Raphson Algorithm
271(7)
A. 1.1 One Unknown
271(3)
A. 1.2 Many Unknowns
274(4)
A.2 Direct Solution
278(1)
A.2.1 One Unknown
278(1)
A.2.2 Many Unknowns
279(1)
A.3 Summary and Further Reading
279(2)
References
279(2)
Appendix B Solving Optimization Problems
281(12)
B.1 Linear Programming Problems
281(3)
B.1.1 Formulation
281(1)
B.1.2 Solution
282(2)
B.2 Mixed-Integer Linear Programming Problems
284(4)
B.2.1 Formulation
284(2)
B.2.2 Solution
286(2)
B.3 Nonlinear Programming Problems
288(3)
B.3.1 Formulation
288(1)
B.3.2 Solution
289(2)
B.4 Summary and Further Reading
291(2)
References
291(2)
Index 293
Antonio J. Conejo, professor at The Ohio State University, OH, US, received an M.S. from MIT, US, and a Ph.D. from the Royal Institute of Technology, Sweden. He has published over 190 papers in SCI journals and is the author or coauthor of books published by Springer, John Wiley, McGraw-Hill and CRC. He has been the principal investigator of many research projects financed by public agencies and the power industry and has supervised 20 PhD theses. He is an IEEE Fellow.

Luis Baringo, associate professor at the Universidad de Castilla-La Mancha, Ciudad Real, Spain, received his Industrial Engineering degree and his PhD in Electrical Engineering from the Universidad de Castilla-La Mancha, Spain, in 2009 and 2013, respectively. In 2014, he was a postdoctoral researcher at the Power Systems Laboratory, ETH Zurich, Switzerland. His research interests are in the fields of planning, operations, and economics of power systems.