Muutke küpsiste eelistusi

E-raamat: Power Systems Electromagnetic Transients Simulation

(University of Canterbury, New Zealand), (University of Canterbury, New Zealand)
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 23-Sep-2011
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9780863419836
  • Formaat - PDF+DRM
  • Hind: 266,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 23-Sep-2011
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9780863419836

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Accurate knowledge of electromagnetic power system transients is crucial to the operation of an economic, efficient and environmentally-friendly power system network, without compromising on the reliability and quality of the electrical power supply. Simulation has become a universal tool for the analysis of power system electromagnetic transients and yet is rarely covered in-depth in undergraduate programmes. It is likely to become core material in future courses.



The primary objective of this book is to describe the application of efficient computational techniques to the solution of electromagnetic transient problems in systems of any size and topology, involving linear and nonlinear components. The text provides an in-depth knowledge of the different techniques that can be employed to simulate the electromagnetic transients associated with the various components within a power system network, setting up mathematical models and comparing different models for accuracy, computational requirements, etc.



Written primarily for advanced electrical engineering students, the text includes basic examples to clarify difficult concepts. Considering the present lack of training in this area, many practising power engineers, in all aspects of the power industry, will find the book of immense value in their professional work.
List of figures
xiii
List of tables
xxi
Preface xxiii
Acronyms and constants xxv
Definitions, objectives and background
1(10)
Introduction
1(2)
Classification of electromagnetic transients
3(1)
Transient simulators
4(1)
Digital simulation
5(1)
State variable analysis
5(1)
Method of difference equations
5(1)
Historical perspective
6(3)
Range of applications
9(1)
References
9(2)
Analysis of continuous and discrete systems
11(24)
Introduction
11(1)
Continuous systems
11(19)
State variable formulations
13(1)
Successive differentiation
13(1)
Controller canonical form
14(2)
Observer canonical form
16(2)
Diagonal canonical form
18(1)
Uniqueness of formulation
19(1)
Example
20(1)
Time domain solution of state equations
20(2)
Digital simulation of continuous systems
22(5)
Example
27(3)
Discrete systems
30(2)
Relationship of continuous and discrete domains
32(2)
Summary
34(1)
References
34(1)
State variable analysis
35(32)
Introduction
35(1)
Choice of state variables
35(2)
Formation of the state equations
37(6)
The transform method
37(3)
The graph method
40(3)
Solution procedure
43(1)
Transient converter simulation (TCS)
44(15)
Per unit system
45(1)
Network equations
46(3)
Structure of TCS
49(2)
Valve switchings
51(2)
Effect of automatic time step adjustments
53(2)
TCS converter control
55(4)
Example
59(5)
Summary
64(1)
References
65(2)
Numerical integrator substitution
67(32)
Introduction
67(1)
Discretisation of R, L, C elements
68(5)
Resistance
68(1)
Inductance
68(2)
Capacitance
70(1)
Components reduction
71(2)
Dual Norton model of the transmission line
73(3)
Network solution
76(12)
Network solution with switches
79(1)
Example: voltage step applied to RL load
80(8)
Non-linear or time varying parameters
88(4)
Current source representation
89(1)
Compensation method
89(2)
Piecewise linear method
91(1)
Subsystems
92(3)
Sparsity and optimal ordering
95(2)
Numerical errors and instabilities
97(1)
Summary
97(1)
References
98(1)
The root-matching method
99(24)
Introduction
99(1)
Exponential form of the difference equation
99(3)
z-domain representation of difference equations
102(3)
Implementation in EMTP algorithm
105(7)
Family of exponential forms of the difference equation
112(6)
Step response
114(2)
Steady-state response
116(1)
Frequency response
117(1)
Example
118(2)
Summary
120(1)
References
121(2)
Transmission lines and cables
123(36)
Introduction
123(1)
Bergeron's model
124(6)
Multiconductor transmission lines
126(4)
Frequency-dependent transmission lines
130(7)
Frequency to time domain transformation
132(4)
Phase domain model
136(1)
Overhead transmission line parameters
137(5)
Bundled subconductors
140(2)
Earth wires
142(1)
Underground cable parameters
142(4)
Example
146(10)
Summary
156(1)
References
156(3)
Transformers and rotating plant
159(34)
Introduction
159(1)
Basic transformer model
160(5)
Numerical implementation
161(1)
Parameters derivation
162(2)
Modelling of non-linearities
164(1)
Advanced transformer models
165(11)
Single-phase UMEC model
166(3)
UMEC Norton equivalent
169(2)
UMEC implementation in PSCAD/EMTDC
171(1)
Three-limb three-phase UMEC
172(4)
Fast transient models
176(1)
The synchronous machine
176(14)
Electromagnetic model
177(6)
Electromechanical model
183(1)
Per unit system
184(1)
Multimass representation
184(1)
Interfacing machine to network
185(4)
Types of rotating machine available
189(1)
Summary
190(1)
References
191(2)
Control and protection
193(24)
Introduction
193(1)
Transient analysis of control systems (TACS)
194(1)
Control modelling in PSCAD/EMTDC
195(10)
Example
198(7)
Modelling of protective systems
205(8)
Transducers
205(3)
Electromechanical relays
208(1)
Electronic relays
209(1)
Microprocessor-based relays
209(1)
Circuit breakers
210(1)
Surge arresters
211(2)
Summary
213(1)
References
214(3)
Power electronic systems
217(34)
Introduction
217(1)
Valve representation in EMTDC
217(2)
Placement and location of switching instants
219(1)
Spikes and numerical oscillations (chatter)
220(10)
Interpolation and chatter removal
222(8)
HVDC converters
230(3)
Example of HVDC simulation
233(1)
FACTS devices
233(10)
The static VAr compensator
233(8)
The static compensator (STATCOM)
241(2)
State variable models
243(5)
EMTDC/TCS interface implementation
244(4)
Control system representation
248(1)
Summary
248(1)
References
249(2)
Frequency dependent network equivalents
251(26)
Introduction
251(1)
Position of FDNE
252(1)
Extent of system to be reduced
252(1)
Frequency range
253(1)
System frequency response
253(9)
Frequency domain identification
253(2)
Time domain analysis
255(2)
Frequency domain analysis
257(5)
Time domain identification
262(1)
Fitting of model parameters
262(4)
RLC networks
262(1)
Rational function
263(2)
Error and figure of merit
265(1)
Model implementation
266(1)
Examples
267(8)
Summary
275(1)
References
275(2)
Steady state applications
277(26)
Introduction
277(1)
Initialisation
278(1)
Harmonic assessment
278(1)
Phase-dependent impedance of non-linear device
279(2)
The time domain in an ancillary capacity
281(5)
Iterative solution for time invariant non-linear components
282(2)
Iterative solution for general non-linear components
284(1)
Acceleration techniques
285(1)
The time domain in the primary role
286(2)
Basic time domain algorithm
286(1)
Time step
286(1)
DC system representation
287(1)
AC system representation
287(1)
Voltage sags
288(4)
Examples
290(2)
Voltage fluctuations
292(4)
Modelling of flicker penetration
294(2)
Voltage notching
296(1)
Example
297(1)
Discussion
297(3)
References
300(3)
Mixed time-frame simulation
303(18)
Introduction
303(1)
Description of the hybrid algorithm
304(3)
Individual program modifications
307(1)
Data flow
307(1)
TS/EMTDC interface
307(6)
Equivalent impedances
308(2)
Equivalent sources
310(1)
Phase and sequence data conversions
310(1)
Interface variables derivation
311(2)
EMTDC to TS data transfer
313(1)
Data extraction from converter waveforms
313(1)
Interaction protocol
313(3)
Interface location
316(1)
Test system and results
317(2)
Discussion
319(1)
References
319(2)
Transient simulation in real time
321(12)
Introduction
321(1)
Simulation with dedicated architectures
322(5)
Hardware
323(2)
RTDS applications
325(2)
Real-time implementation on standard computers
327(3)
Example of real-time test
329(1)
Summary
330(1)
References
331(2)
A Structure of the PSCAD/EMTDC program
333(8)
References
340(1)
B System identification techniques
341(10)
s-domain identification (frequency domain)
341(2)
z-domain identification (frequency domain)
343(2)
z-domain identification (time domain)
345(1)
Prony analysis
346(2)
Recursive least-squares curve-fitting algorithm
348(2)
References
350(1)
C Numerical integration
351(8)
Review of classical methods
351(3)
Truncation error of integration formulae
354(2)
Stability of integration methods
356(1)
References
357(2)
D Test systems data
359(8)
CIGRE HVDC benchmark model
359(1)
Lower South Island (New Zealand) system
359(6)
Reference
365(2)
E Developing difference equations
367(6)
Root-matching technique applied to a first order lag function
367(1)
Root-matching technique applied to a first order differential pole function
368(1)
Difference equation by bilinear transformation for RL series branch
369(1)
Difference equation by numerical integrator substitution for RL series branch
369(4)
F MATLAB code examples
373(16)
Voltage step on RL branch
373(1)
Diode fed RL branch
374(2)
General version of example F.2
376(8)
Frequency response of difference equations
384(5)
G FORTRAN code for state variable analysis
389(6)
State variable analysis program
389(6)
H FORTRAN code for EMT simulation
395(22)
DC source, switch and RL load
395(2)
General EMT program for d.c. source, switch and RL load
397(3)
AC source diode and RL load
400(2)
Simple lossless transmission line
402(2)
Bergeron transmission line
404(3)
Frequency-dependent transmission line
407(6)
Utility subroutines for transmission line programs
413(4)
Index 417
Neville R. Watson received BE(Hons.) and PhD degrees in 1984 and 1988, respectively, from the University of Canterbury, New Zealand, where he is now a senior lecturer. He is co-author of three other books, has contributed several chapters to a number of edited books and has been published in nearly 120 other publications.



Jos Arrillaga received PhD and DSc degrees in 1966 and 1980, respectively, from UMIST, Manchester, UK, where he led the Power Systems Group between 1970 and 1974. Since 1975, he has been a Professor of Electrical Engineering at the University of Canterbury, New Zealand. He is the author of five other books, several book chapters and about 300 other publications. He is a Fellow of the IET, the IEEE, the Academy of Sciences of New Zealand and the Royal Society of New Zealand. He was the recipient of the 1997 Uno Lamm medal for his contributions to HVDC transmission.