Muutke küpsiste eelistusi

E-raamat: Power Systems Electromagnetic Transients Simulation

, (University of Canterbury, New Zealand)
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 14-Dec-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785615009
  • Formaat - EPUB+DRM
  • Hind: 234,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 14-Dec-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785615009

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Accurate knowledge of electromagnetic power system transients is crucial to the operation of an economic, efficient and environmentally friendly power systems network without compromising on the reliability and quality of electrical power supply. Electromagnetic transient (EMT) simulation has therefore become a universal tool for the analysis of power system electromagnetic transients in the range of nanoseconds to seconds, and is the backbone for the design and planning of power systems, as well as for the investigation of problems.

In this fully revised and updated new edition of this classic book, a thorough review of EMT simulation is provided, with many simple examples included to clarify difficult concepts. Topics covered include analysis of continuous and discrete systems; state variable analysis; numerical integrator substitution; the root-matching method; transmission lines and cables; transformers and rotating plant; control and protection; power electronic systems; frequency-dependent network equivalents; steady-state assessment; mixed time-frame simulation; transient simulation in real-time; and applications.

This book is ideal for researchers, postgraduate students, academics and professionals working in the area of power system transients. It can also be used by undergraduate students and those that are getting into the area of electromagnetic transients.



This new edition of the classic on electromagnetic transient (EMT) simulation gives an up-to-date overview of the area. Thoroughly revised, it covers new topics including: simulation of very large networks; modelling of power electronic devices; integration of renewable energy sources; and real-time simulation of complex systems.

List of figures
xiii
List of tables
xxv
Preface xxvii
Acronyms xxxi
1 Definitions objectives and background
1(10)
1.1 Introduction
1(1)
1.2 Classification of electromagnetic transients
2(1)
1.3 Transient simulators
3(1)
1.4 Digital simulation
4(2)
1.4.1 State variable analysis
5(1)
1.4.2 Method of difference equations
5(1)
1.5 Historical perspective
6(2)
1.6 Range of applications
8(1)
References
8(3)
2 Analysis of continuous and discrete systems
11(24)
2.1 Introduction
11(1)
2.2 Continuous systems
11(18)
2.2.1 State variable formulations
12(8)
2.2.2 Time-domain solution of state equations
20(1)
2.2.3 Digital simulation of continuous systems
21(8)
2.3 Discrete systems
29(2)
2.4 Relationship of continuous and discrete domains
31(1)
2.5 Summary
31(2)
References
33(2)
3 State variable analysis
35(32)
3.1 Introduction
35(1)
3.2 Choice of state variables
35(2)
3.3 Formation of the state equations
37(5)
3.3.1 The transform method
37(3)
3.3.2 The graph method
40(2)
3.4 Solution procedure
42(2)
3.5 Transient converter simulation
44(15)
3.5.1 Per unit system
45(1)
3.5.2 Network equations
45(4)
3.5.3 Structure of TCS
49(1)
3.5.4 Valve switchings
49(4)
3.5.5 Effect of automatic time-step adjustments
53(3)
3.5.6 TCS converter control
56(3)
3.6 Example
59(4)
3.7 Summary
63(1)
References
64(3)
4 Numerical integrator substitution
67(32)
4.1 Introduction
67(1)
4.2 Discretisation of R, L, C elements
67(7)
4.2.1 Resistance
67(1)
4.2.2 Inductance
68(1)
4.2.3 Capacitance
69(2)
4.2.4 Components reduction
71(3)
4.3 Dual Norton model of the transmission line
74(2)
4.4 Network solution
76(12)
4.4.1 Example: conversion of voltage sources to current sources
77(1)
4.4.2 Network solution with switches
78(2)
4.4.3 Example: voltage step applied to RL load
80(8)
4.5 Non-linear or time varying parameters
88(4)
4.5.1 Current-source representation
88(1)
4.5.2 Compensation method
89(2)
4.5.3 Piecewise linear method
91(1)
4.6 Subsystems
92(2)
4.7 Sparsity and optimal ordering
94(3)
4.8 Numerical errors and instabilities
97(1)
4.9 Summary
97(1)
References
98(1)
5 The root-matching method
99(22)
5.1 Introduction
99(1)
5.2 Exponential form of the difference equation
99(3)
5.3 z-Domain representation of difference equations
102(2)
5.4 Implementation in EMTP algorithm
104(7)
5.5 Family of exponential forms of the difference equation
111(6)
5.5.1 Step response
113(2)
5.5.2 Steady-state response
115(1)
5.5.3 Frequency response
116(1)
5.6 Example
117(2)
5.7 Summary
119(1)
References
120(1)
6 Transmission lines and cables
121(34)
6.1 Introduction
121(1)
6.2 Bergeron's model
121(6)
6.2.1 Multi-conductor transmission lines
124(3)
6.3 Frequency-dependent transmission lines
127(8)
6.3.1 Frequency to time-domain transformation
130(5)
6.3.2 Phase domain model
135(1)
6.4 Overhead transmission line parameters
135(3)
6.4.1 Bundled sub-conductors
137(1)
6.4.2 Earth wires
138(1)
6.5 Underground cable parameters
138(5)
6.6 Example
143(10)
6.7 Summary
153(1)
References
153(2)
7 Transformers and rotating plant
155(36)
7.1 Introduction
155(1)
7.2 Basic transformer model
155(7)
7.2.1 Numerical implementation
157(1)
7.2.2 Parameters derivation
158(2)
7.2.3 Modelling of non-linearities
160(2)
7.3 Advanced transformer models
162(10)
7.3.1 Single-phase UMEC model
162(4)
7.3.2 UMEC implementation in PSCAD/EMTDC
166(2)
7.3.3 Three-limb three-phase UMEC
168(3)
7.3.4 Fast transient models
171(1)
7.4 The synchronous machine
172(15)
7.4.1 Electromagnetic model
172(7)
7.4.2 Electro-mechanical model
179(2)
7.4.3 Interfacing machine to network
181(4)
7.4.4 Types of rotating machine available
185(2)
7.5 Summary
187(1)
References
187(4)
8 Control and protection
191(24)
8.1 Introduction
191(1)
8.2 Transient analysis of control systems
191(2)
8.3 Control modelling in PSCAD/EMTDC
193(10)
8.3.1 Example
196(7)
8.4 Modelling of protective systems
203(8)
8.4.1 Transducers
203(3)
8.4.2 Electromechanical relays
206(1)
8.4.3 Electronic relays
207(1)
8.4.4 Microprocessor-based relays
207(1)
8.4.5 Circuit breakers
208(1)
8.4.6 Surge arresters
209(2)
8.5 Summary
211(1)
References
212(3)
9 Power electronic systems
215(34)
9.1 Introduction
215(1)
9.2 Valve representation in EMTDC
215(2)
9.3 Placement and location of switching instants
217(1)
9.4 Spikes and numerical oscillations (chatter)
218(9)
9.4.1 Interpolation and chatter removal
220(7)
9.5 HVDC converters
227(4)
9.6 Example of HVDC simulation
231(1)
9.7 FACTS devices
231(10)
9.7.1 The static VAr compensator
231(8)
9.7.2 The static compensator (STATCOM)
239(2)
9.8 State variable models
241(5)
9.8.1 EMTDC/TCS interface implementation
241(3)
9.8.2 Control system representation
244(2)
9.9 Summary
246(1)
References
246(3)
10 Frequency-dependent network equivalents
249(28)
10.1 Introduction
249(1)
10.2 Position of FDNE
250(1)
10.3 Extent of system to be reduced
250(1)
10.4 Frequency range
250(1)
10.5 System frequency response
251(9)
10.5.1 Frequency-domain identification
252(8)
10.5.2 Time-domain identification
260(1)
10.6 Fitting of model parameters
260(4)
10.6.1 RLC networks
260(2)
10.6.2 Rational function
262(2)
10.7 Vector fitting
264(1)
10.8 Model implementation
264(1)
10.9 Examples
265(8)
10.10 Summary
273(2)
References
275(2)
11 Steady-state assessment
277(18)
11.1 Introduction
277(1)
11.2 Phase-dependent impedance of non-linear device
278(3)
11.3 The time-domain in an ancillary capacity
281(4)
11.3.1 Iterative solution for time invariant non-linear components
281(1)
11.3.2 Iterative solution for general non-linear components
282(2)
11.3.3 Acceleration techniques
284(1)
11.4 The time-domain in the primary role
285(5)
11.4.1 Harmonic assessment historically
285(1)
11.4.2 Basic time-domain algorithm
286(1)
11.4.3 Time-step
287(1)
11.4.4 Dc System representation
287(1)
11.4.5 Ac System representation
287(3)
11.5 Discussion
290(2)
References
292(3)
12 Mixed time-frame simulation
295(20)
12.1 Introduction
295(2)
12.2 Description of the hybrid algorithm
297(2)
12.2.1 Individual program modifications
299(1)
12.2.2 Dataflow
299(1)
12.3 TS/EMTDC interface
299(6)
12.3.1 Equivalent impedances
300(2)
12.3.2 Equivalent sources
302(1)
12.3.3 Phase and sequence data conversions
302(1)
12.3.4 Interface variables derivation
303(2)
12.4 EMTDC to TS data transfer
305(1)
12.4.1 Data extraction from converter waveforms
305(1)
12.5 Interaction protocol
306(2)
12.6 Interface location
308(1)
12.7 Test system and results
309(2)
12.8 Discussion
311(1)
References
312(3)
13 Transient simulation in real-time
315(14)
13.1 Introduction
315(3)
13.2 Simulation with dedicated architectures
318(5)
13.2.1 Hardware
319(2)
13.2.2 RTDS applications
321(2)
13.3 Real-time and near real-time on standard computers
323(2)
13.3.1 Example of real-time test
324(1)
13.4 Summary
325(1)
References
325(4)
14 Applications
329(106)
14.1 Introduction
329(2)
14.1.1 Modelling considerations
330(1)
14.1.2 Time-step and plot-step
330(1)
14.1.3 Avoiding singularities
331(1)
14.1.4 Initialisation
331(1)
14.2 Lightning studies
331(10)
14.2.1 EMT modelling
332(4)
14.2.2 Back-flashover modelling
336(1)
14.2.3 Surge arrester modelling
337(1)
14.2.4 Direct lightning strike to phase conductor
338(1)
14.2.5 Lightning strike to ground wire or tower
338(3)
14.3 Capacitor switching studies
341(22)
14.3.1 Inrush
342(9)
14.3.2 Back-to-back switching
351(5)
14.3.3 Voltage magnification
356(7)
14.4 Transformer energisation
363(10)
14.4.1 Parallel sympathetic interaction
367(5)
14.4.2 Other issues
372(1)
14.4.3 Mitigation
372(1)
14.4.4 Modelling
372(1)
14.5 Transient recovery voltage studies
373(11)
14.6 Voltage dips/sags
384(4)
14.6.1 Examples
385(3)
14.7 Voltage fluctuations
388(5)
14.7.1 Modelling of flicker penetration
390(3)
14.8 Voltage notching
393(2)
14.9 Wind power
395(9)
14.9.1 Type 3 WTG
398(2)
14.9.2 Type 4 WTG
400(4)
14.10 Solar photovoltaic farm
404(5)
14.11 HVDC
409(10)
14.11.1 HVDC using LCC
410(6)
14.11.2 HVDC using VSC
416(3)
14.12 Ferroresonance
419(5)
14.13 Electric vehicle charging
424(2)
14.14 Heat-pumps/air-conditioners
426(3)
14.15 Battery storage
429(3)
14.16 Summary
432(1)
References
432(3)
Appendix A System identification techniques
435(10)
A.1 s-Domain identification (frequency-domain)
435(2)
A.2 z-Domain identification (frequency-domain)
437(2)
A.3 z-Domain identification (time-domain)
439(1)
A.4 Prony analysis
440(2)
A.5 Recursive least-squares curve-fitting algorithm
442(3)
Appendix B Numerical integration
445(8)
B.1 Review of classical methods
445(3)
B.2 Truncation error of integration formulae
448(2)
B.3 Stability of integration methods
450(3)
Appendix C Test systems data
453(8)
C.1 CIGRE HVDC benchmark model
453(1)
C.2 Lower South Island (New Zealand) system
453(8)
Appendix D Developing difference equations
461(8)
D.1 Root-matching technique applied to a first-order lag function
461(1)
D.2 Root-matching technique applied to a first-order differential pole function
462(1)
D.3 Difference equation by bilinear transformation for RL series branch
463(1)
D.4 Difference equation by numerical integrator substitution for RL series branch
463(3)
D.5 Equivalence of trapezoidal rule and bilinear transform
466(3)
Appendix E MATLAB® code examples
469(16)
E.1 Voltage step on RL branch
469(1)
E.2 Diode-fed RL branch
470(2)
E.3 General version of example E.2
472(9)
E.4 Frequency response of difference equations
481(4)
Index 485
Neville Watson is a Professor at the University of Canterbury, New Zealand. His research interests focus on electrical power systems, power quality, harmonics, electromagnetic transients, and use of power electronics in power systems. A Senior Member of the IEEE, member of IET and Engineering New Zealand, he has authored numerous books on his research, as well as an impressive number of papers in international journals.



Jos Arrillaga was Professor of Electrical Engineering at the University of Canterbury, New Zealand from 1975 until 2009. He was the author of several books and over 300 publications, was a Fellow of the IET, the IEEE, the Academy of Sciences of New Zealand and the Royal Society of New Zealand. He was the recipient of the 1997 Uno Lamm medal for his contributions to HVDC transmission.