Muutke küpsiste eelistusi

E-raamat: Power Systems Grounding

  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 12-Apr-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811004469
  • Formaat - PDF+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 12-Apr-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811004469

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides electrical and electronic engineering undergraduate and graduate students and trainees with practical information on grounding-system parameters, and on different methods for measuring soil resistivity and ground resistance. It also presents some real-world studies, which enhance the learning experience. It discusses electromagnetic field theories to explain ground resistance modeling using different sizes of electrodes. Furthermore it includes CYME GRD software for simulation of soil resistivity and grounding grid design, and considers some fundamental concepts of power systems to clarify other topics related to the grounding system.
1 Power Analysis
1(48)
1.1 Introduction
1(1)
1.2 Instantaneous Power
1(2)
1.3 Average and Apparent Power
3(3)
1.4 Power Factor
6(1)
1.5 Complex Power and Reactive Power
7(4)
1.6 Complex Power Balance
11(2)
1.7 Power Factor Correction
13(4)
1.8 Three-Phase System
17(1)
1.9 Naming Phases and Phase Sequence
18(1)
1.10 Star Connection
19(1)
1.11 Voltage and Current Relations for Y-Connection
20(4)
1.12 Delta or Mesh Connection
24(1)
1.13 Voltage and Current Relations for Delta-Connection
24(3)
1.14 Three-Phase Power Calculation
27(5)
1.15 Measurement of Three-Phase Power
32(1)
1.16 Power Factor Measurement
33(3)
1.17 Series Resonance
36(2)
1.18 Parallel Resonance
38(11)
Exercise Problems
41(6)
References
47(2)
2 Transformer: Principles and Practices
49(52)
2.1 Introduction
49(1)
2.2 Working Principle of Transformer
49(1)
2.3 Flux in a Transformer
50(1)
2.4 Ideal Transformer
51(1)
2.5 E.M.F. Equation of Transformer
52(1)
2.6 Turns Ratio of Transformer
53(3)
2.7 Rules for Referring Impedance
56(2)
2.8 Equivalent Circuit of a Transformer
58(4)
2.8.1 Exact Equivalent Circuit
58(2)
2.8.2 Approximate Equivalent Circuit
60(2)
2.9 Polarity of a Transformer
62(2)
2.10 Three-Phase Transformer
64(1)
2.11 Transformer Vector Group
65(8)
2.12 Voltage Regulation of a Transformer
73(3)
2.13 Efficiency of a Transformer
76(1)
2.14 Iron and Copper Losses
76(2)
2.15 Condition for Maximum Efficiency
78(2)
2.16 Transformer Tests
80(5)
2.16.1 Open Circuit Test
81(1)
2.16.2 Short Circuit Test
82(3)
2.17 Autotransformer
85(2)
2.18 Parallel Operation of a Single-Phase Transformer
87(1)
2.19 Three-Phase Transformer Connections
88(6)
2.19.1 Wye-Wye Connection
88(1)
2.19.2 Wye-Delta Connection
89(1)
2.19.3 Delta-Wye Connection
90(1)
2.19.4 Delta-Delta Connection
91(3)
2.20 Instrument Transformers
94(7)
Exercise Problems
95(4)
References
99(2)
3 Symmetrical and Unsymmetrical Faults
101(52)
3.1 Introduction
101(1)
3.2 Symmetrical Faults
101(1)
3.3 Unsymmetrical Faults
102(1)
3.4 Symmetrical Components
102(2)
3.5 Representation of Symmetrical Components
104(5)
3.6 Complex Power in Symmetrical Components
109(2)
3.7 Sequence Impedances of Power System Equipment
111(4)
3.8 Zero Sequence Models
115(5)
3.9 Classification of Unsymmetrical Faults
120(1)
3.10 Sequence Network of an Unloaded Synchronous Generator
121(3)
3.11 Single Line-to-Ground Fault
124(5)
3.12 Line-to-Line Fault
129(5)
3.13 Double Line-to-Ground Fault
134(19)
Exercise Problems
147(4)
References
151(2)
4 Grounding System Parameters and Expression of Ground Resistance
153(50)
4.1 Introduction
153(1)
4.2 Objectives of Grounding System
153(1)
4.3 Grounding Symbols and Classification
154(1)
4.4 Ungrounded Systems
155(7)
4.5 Grounded Systems
162(9)
4.5.1 Solidly Grounded System
162(5)
4.5.2 Resistance Grounding
167(2)
4.5.3 Reactance Grounding
169(1)
4.5.4 Voltage Transformer Grounding
170(1)
4.6 Resonant Grounding
171(4)
4.7 Ground Resistance
175(1)
4.8 Electric Potential
176(1)
4.9 Ground Resistance with Hemisphere
177(3)
4.10 Ground Resistance with Sphere Electrode
180(2)
4.11 Ground Resistance with Cylindrical Rod
182(9)
4.12 Ground Resistance with Circular Plate
191(5)
4.13 Ground Resistance with Conductor Type Electrode
196(7)
Exercise Problems
200(1)
References
201(2)
5 Soil Resistivity
203(48)
5.1 Introduction
203(1)
5.2 Soil Resistance and Resistivity
203(2)
5.3 Types of Soil
205(2)
5.4 Permeability and Permittivity of Soil
207(1)
5.5 Influence of Different Factors on Soil Resistivity
208(2)
5.6 Current Density of Soil
210(2)
5.7 Continuity of Earth Current
212(3)
5.8 Current Density at Soil Interface
215(4)
5.9 Derivation of Poisson's and Laplace's Equations
219(3)
5.10 Uniqueness Theorem
222(2)
5.11 Solutions of Laplace's Equation
224(9)
5.11.1 One Dimension Solution
224(2)
5.11.2 Two-Dimension Solution
226(7)
5.12 Solution of Laplace's Equation in Cylindrical Coordinates
233(2)
5.13 Spherical Coordinate System
235(7)
5.14 Solution of Poisson's Equation
242(1)
5.15 Numerical Solution of Laplace's Equation
243(8)
Exercise Problems
249(1)
References
249(2)
6 Soil Resistivity Measurement
251(26)
6.1 Introduction
251(1)
6.2 Two-Pole Method
251(1)
6.3 Four-Pole Equal Method
252(2)
6.4 Derivation of Resistivity
254(7)
6.5 Lee's Partitioning Method
261(2)
6.6 Sided Probe System
263(2)
6.7 Schlumberger Method
265(3)
6.8 Different Terms in Grounding System
268(1)
6.9 Touch and Step Potentials
269(8)
Exercise Problems
274(1)
References
275(2)
7 Ground Resistance Measurement
277(30)
7.1 Introduction
277(1)
7.2 Types of Electrodes
277(2)
7.3 Two-Pole Method
279(1)
7.4 Three-Pole Method
280(1)
7.5 Fall of Potential Method
281(1)
7.6 The 62 % Method
282(1)
7.7 Derivation of 62 % Method
283(3)
7.8 Position of Probes
286(2)
7.9 Clamp-on Method
288(2)
7.10 Slope Method
290(2)
7.11 Ammeter-Voltmeter Method
292(1)
7.12 Ammeter-Wattmeter Method
293(1)
7.13 Wheatstone Bridge Method
293(2)
7.14 Bridge Method
295(1)
7.15 Potentiometer Method
296(2)
7.16 Measurement of Touch and Step Potentials
298(1)
7.17 Application Example 1: Measurement of Ground Resistance at Telephone Exchange
299(2)
7.18 Application Example 2: Measurement of Ground Resistance at Residential Area
301(1)
7.19 Ground Resistance Measuring Equipment
302(5)
References
305(2)
Index 307
Md. Abdus Salam obtained his PhD in Electrical Engineering, in 2000 from the University Teknologi Malaysia. Currently, he is working as a Faculty member in the Department of Electrical and Electronic Engineering, Faculty of Engineering at the Institut Teknologi Brunei (Our National Engineering and Technology University), Negara Brunei Darussalam. His research interests include power system modelling for on-line control, insulator pollution studies, grounding systems and renewable energy. He has published a large number of referred journal and conference papers. He is a senior member of IEEE, member of IET and working as a reviewer of IEEE Transactions on Power Delivery, IEEE Transactions on Dielectrics and Electrical Insulation, IET Generation, Transmission and Distribution, Journal of Electrostatics, Elsevier Science etc.

Quazi M. Rahman obtained his PhD degree from the University of Calgary, Canada in 2002. Currently, he is serving as a faculty member in the Department of Electrical and Computer Engineering, at the University of Western Ontario, London, Canada. He is a licensed professional engineer in the province of Ontario, Canada and a senior member of the IEEE. He is a contributing author of a number of refereed journals and proceeding papers, and book chapters in the areas of wireless communications. His research interest includes Spread Spectrum and MIMO systems, OFDM systems; channel estimation and detection in the physical layer of wireless mobile, satellite communications and grounding systems. Also, he is involved in the study of software applications.