Muutke küpsiste eelistusi

E-raamat: Power Transformer Condition Monitoring and Diagnosis

Edited by (Curtin University, ECE Department, Australia)
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 17-May-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785612558
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 201,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 17-May-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785612558
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Power transformers are a key asset for electricity utilities around the globe. However, aging populations of large power transformers require reliable monitoring and diagnostics techniques to extend the asset's lifetime and minimise the possibility of catastrophic failure. This book describes the most popular power transformer condition monitoring techniques from principles to practice.



Topics covered include concepts and challenges in power transformer condition monitoring and diagnosis; dissolved gas analysis, measurements and interpretations; moisture analysis for power transformers; assessing degree of polymerisation value considering thermal ageing and paper moisture; frequency response analysis; monitoring of power transformers by mechanical oscillations; lifecycle management of power transformers in a new energy era; and other topics in power transformer asset management and remnant life. Each chapter covers the fundamentals and theory of the topic, and conveys techniques to measure relevant parameters and assess or interpret the results.



Power Transformer Condition Monitoring and Diagnosis is essential reading for researchers in academia and industry involved with power transformer R&D, engineers in utilities working with equipment monitoring techniques, and advanced students in power engineering.
About the editor xi
Preface xiii
List of acronyms
xv
1 Dissolved gas analysis, measurements and interpretations
1(38)
Carlos Gamez
1.1 Introduction
1(1)
1.2 Insulating liquids
2(1)
1.2.1 Mineral oil
3(1)
1.3 The transformer as a chemical reactor
3(4)
1.3.1 Gas production mechanisms
5(2)
1.4 Oil analysis
7(2)
1.4.1 Gas chromatography
8(1)
1.5 Oil sampling
9(5)
1.5.1 Bottle sampling
12(1)
1.5.2 Syringe sampling
13(1)
1.6 Interpretation techniques
14(19)
1.6.1 Fault types
16(1)
1.6.2 Techniques that rely on the gas profile
17(6)
1.6.3 Techniques that rely on ratios
23(5)
1.6.4 Techniques that rely on rates of change
28(1)
1.6.5 Putting it all together
29(4)
1.7 Future of oil analysis
33(6)
1.7.1 Online monitors
33(1)
1.7.2 Larger datasets
34(1)
1.7.3 Analysis automation
34(1)
References
35(4)
2 Partial discharges: keys for condition monitoring and diagnosis of power transformers
39(48)
Ricardo Albarracin
Guillermo Robles
Jorge Alfredo Ardila-Rey
Andrea Cavallini
Renzo Passaglia
Abstract
39(1)
2.1 Introduction
39(1)
2.2 Dielectric materials used in power transformers
40(3)
2.3 Effects of ageing in insulation systems of power transformers
43(6)
2.3.1 Thermal stress
43(2)
2.3.2 Mechanical stress
45(1)
2.3.3 Electrical stress
46(2)
2.3.4 Ambient stress
48(1)
2.4 Condition monitoring techniques in power transformers
49(28)
2.4.1 Electrical measurements
49(2)
2.4.2 Apparent charge estimation: quasi-integration and calibration
51(3)
2.4.3 PD detection in transformers
54(4)
2.4.4 Unconventional methods of partial discharge measurements in power transformers
58(5)
2.4.5 Methods of partial discharge analysis
63(14)
2.5 Conclusions
77(10)
Acknowledgements
78(1)
References
79(8)
3 Moisture analysis for power transformers
87(38)
Belen Garcia
Alexander Cespedes
Diego Garcia
3.1 Introduction
87(1)
3.2 Moisture in transformer insulation
88(2)
3.2.1 Risks associated to the presence of high levels of moisture in transformers
88(1)
3.2.2 Sources of moisture contamination in transformers
89(1)
3.3 Moisture dynamics in transformers
90(11)
3.3.1 Adsorption and desorption of moisture in cellulosic insulation
92(2)
3.3.2 Moisture distribution within transformer solid insulation
94(1)
3.3.3 Solubility of water in oil
95(1)
3.3.4 Moisture equilibrium between paper and oil
96(2)
3.3.5 Moisture equilibrium in alternative fluids
98(2)
3.3.6 Moisture dynamics in a transformer under operation
100(1)
3.4 Monitoring of moisture content in oil
101(5)
3.4.1 Periodical sampling of oil
101(1)
3.4.2 On-line measure of oil moisture with capacitive sensors
102(2)
3.4.3 Interpretation of the moisture content of oil
104(2)
3.5 Estimation of the moisture content of solid insulation from moisture in oil measures
106(2)
3.5.1 Determination of moisture content of paper using the equilibrium charts
106(1)
3.5.2 Improved methodologies to estimate the moisture content of paper from the measures of moisture content of oil
107(1)
3.6 Dielectric response methods for the estimation of moisture in solid insulation
108(11)
3.6.1 Theoretical principles
108(2)
3.6.2 Frequency dielectric spectroscopy
110(5)
3.6.3 Recovery voltage method
115(2)
3.6.4 Polarisation and depolarisation currents
117(2)
3.7 Conclusions, future trends and challenges
119(6)
References
120(5)
4 Assessing DP value of a power transformer considering thermal ageing and paper moisture
125(18)
Ricardo David Medina Velecela
Andres Arturo Romero Quete
Enrique Esteban Mombello
Giuseppe Rattd
Diego Xavier Morales Jadan
Abstract
125(1)
4.1 Introduction and preliminary issues
126(1)
4.2 State of the art
126(1)
4.3 Theoretical framework
127(6)
4.3.1 Paper as power transformer solid insulation system
127(1)
4.3.2 Paper degradation process
127(2)
4.3.3 Degradation accelerators
129(1)
4.3.4 Paper humidity
129(2)
4.3.5 Assessing of depolymerization process
131(2)
4.4 Proposed method
133(2)
4.4.1 Problem description
133(1)
4.4.2 Oil moisture estimation
133(1)
4.4.3 New approach for degree or polymerization assessing
134(1)
4.5 Casestudy
135(4)
4.5.1 Results
136(3)
4.6 Conclusions
139(4)
References
140(3)
5 Frequency response analysis
143(68)
Mehdi Bagheri
Toan Phung
Abstract
143(1)
5.1 Introduction
143(1)
5.2 Transformer winding deformation
144(4)
5.2.1 Deformation types and short-circuit current
144(2)
5.2.2 Transformer transportation causing active part displacement
146(2)
5.3 Methods to recognize winding deformation
148(4)
5.3.1 Short-circuit impedance
148(3)
5.3.2 Transfer function
151(1)
5.4 Sweep frequency response analysis
152(1)
5.5 Standard connection methods
153(2)
5.5.1 End-to-end measurement
153(1)
5.5.2 Inductive intevwinding measurements
153(1)
5.5.3 Capacitive interwinding measurements
153(1)
5.5.4 End-to-end short-circuit measurements
153(2)
5.6 FRA signature assessment
155(11)
5.6.1 Visual assessment of FRA signature
155(7)
5.6.2 Statistical assessment of FRA signature
162(4)
5.7 Factors affecting frequency response signature
166(33)
5.7.1 Winding inductance, capacitance
166(12)
5.7.2 Series capacitance under buckling
178(1)
5.7.3 Shunt capacitance under buckling
178(1)
5.7.4 Tap-changer
178(5)
5.7.5 Paper insulation deterioration
183(4)
5.7.6 Temperature and moisture content
187(12)
5.8 Online transformer winding deformation diagnosis
199(12)
5.8.1 Methods for online transformer active part assessment
199(4)
5.8.2 Online FRA setup
203(2)
5.8.3 Online FRA (OFRA) progress and influence of bushing tap
205(2)
References
207(4)
6 Monitoring of power transformers by mechanical oscillations
211(28)
Michael Beltle
6.1 Introduction
211(1)
6.2 Physics of mechanical oscillations
212(2)
6.2.1 Oscillations of the core
212(1)
6.2.2 Oscillations of the windings
213(1)
6.3 Measurement of vibrations
214(3)
6.3.1 Comparison of tank wall and in-oil measurement
216(1)
6.4 Sensitivity of surface tank measurements
217(3)
6.4.1 Laboratory setup
217(2)
6.4.2 Field test: sensor positions
219(1)
6.5 Superimposing effects on tank wall measurements
220(3)
6.5.1 Effects of on-load tap-changer position
220(1)
6.5.2 Effects of transformer load and operating temperature
221(2)
6.6 Practical case studies
223(2)
6.6.1 Mechanical oscillations over time
223(2)
6.7 Behaviour of mechanical oscillations at DC superimposition
225(9)
6.7.1 DC-coupling path into power transformers
225(1)
6.7.2 Saturation and its effect on magnetostriction
226(1)
6.7.3 Test setup for DC superimposed effects
227(2)
6.7.4 DC-detection using vibration measurement
229(2)
6.7.5 Dependency of DC-driven vibration and transformer noise
231(2)
6.7.6 Case study on transformers impacted by DC
233(1)
6.8 Conclusion
234(5)
References
235(4)
7 Lifecycle management of power transformers in a new energy era
239(20)
Carlos Gamez
7.1 Introduction
239(1)
7.2 A changing landscape
240(6)
7.2.1 Renewable energy sources
243(3)
7.2.2 Energy storage
246(1)
7.3 Impact on asset management strategies
246(2)
7.3.1 Operation, maintenance and replacement of ageing assets
247(1)
7.4 The advent of artificial intelligence
248(3)
7.5 Analysis automation as an aid to lifecycle management
251(3)
7.5.1 Condition attributes
252(1)
7.5.2 Measurements
253(1)
7.5.3 Analysis rules
253(1)
7.5.4 Implementation tool
254(1)
7.6 The digital substation
254(2)
7.6.1 Value proposition
254(1)
7.6.2 Technical standards
255(1)
7.6.3 Hardware and software technologies
255(1)
7.6.4 Business processes
256(1)
7.7 Summary
256(3)
References
257(2)
8 Power transformer asset management and remnant life
259(36)
Norazhar Abu Bakar
Abstract
259(1)
8.1 Introduction
259(2)
8.2 Transformer health condition
261(2)
8.3 Proposed approach
263(1)
8.4 Fuzzy-logic model development
264(20)
8.4.1 Furan criticality
265(2)
8.4.2 CO ratio criticality
267(3)
8.4.3 Paper ageing criticality
270(1)
8.4.4 Relative accelerating ageing criticality
271(3)
8.4.5 Thermal fault criticality
274(1)
8.4.6 Electrical fault criticality
275(1)
8.4.7 Overall thermal-electrical fault criticality
276(1)
8.4.8 IFT criticality
277(4)
8.4.9 Remnant life estimation
281(1)
8.4.10 Asset management model
282(2)
8.5 Case study on pre-known condition of power transformer
284(5)
8.6 Conclusion
289(6)
Acknowledgement
291(1)
References
291(4)
Index 295
Ahmed Abu-Siada is an Associate Professor at the ECE Department at Curtin University, Australia. Prior to this, Dr. Abu-Siada served as Senior Electrical Engineer with Qatar Petroleum corporate training industrial. He has served as Vice-Chair for the IEEE Computational Intelligence Society (CIS), course coordinator for Master of Electrical Utility Engineering at Curtin University, and is a Board Member for a number of related journals.