Muutke küpsiste eelistusi

E-raamat: Practical Applications of Microresonators in Optics and Photonics

Edited by (Independent Contractor, Pasadena, California, USA)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fifty-five international academics and researchers contribute 13 chapters reviewing basic directions in the development of the practical applications of the microresonators, with reports on both micro- and nano-optical elements. Topics addressed include photonic crystal-based resonators, pillar microcavities, crystalline WGM resonators in filtering and laser stabilization, polygonal-shaped microdisk resonators, electro-optic polymer ring resonators for millimeter-wave modulation and optical signal processing, organic micro-lasers, optical microfiber loop and coil resonators, optofluidic ring resonator biological and chemical sensors, crystalline microresonators for fabrication of a non-electronic wireless receiver with immunity to damage by electromagnetic pulses, cavity opto-mechanics, optical frquency comb generation in monolithic microresonators, bit rate limitations in single and coupled microresonators, and linear and nonlinear localization of light in optical slow-wave structures. For graduate students, researchers, and new and experienced professionals in the field. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)
Preface xi
Editor xv
Contributors xvii
Ultrahigh-Q Photonic Crystal Nanocavities and Their Applications
1(52)
Takasumi Tanabe
Eiichi Kuramochi
Akihiko Shinya
Masaya Notomi
Introduction
2(1)
Small Optical Cavities Fabricated on 2D Photonic Crystal Slabs
3(4)
2D and 3D Photonic Crystals
3(3)
Ultrasmall Cavity: Photonic Crystal Nanocavity
6(1)
Designing High-Q Photonic Crystal Nanocavities
7(13)
Design of High-Q Photonic Crystal Nanocavity
7(1)
Waveguide-Coupled High-Q Photonic Crystal Nanocavity
8(1)
Various Types of High-Q Photonic Crystal Cavities
9(1)
Line Defect Cavities with Modulated End-Holes
9(3)
Point Defect Hexapole Cavity with Rotational Symmetry Confinement
12(4)
Width-Modulated Line Defect Cavity with Mode-Gap Confinement
16(1)
Other Photonic Crystal Nanocavities
17(2)
Discussion of Structural Error and Q
19(1)
Fabrication of Photonic Crystal Slabs
20(1)
Characterization of Ultrahigh-Q Photonic Crystal Nanocavities
20(6)
Spectral Domain Measurement
20(1)
Spectrum Measurement with Frequency Tunable Laser
21(1)
Spectrum Measurement using Electro-Optic Frequency Shifter
21(2)
Time Domain Measurement
23(2)
Technical Issues Related to Obtaining Accurate Q
25(1)
Applications of High-Q Photonic Crystal Nanocavities
26(22)
Caging Light and Slow Light
26(1)
Caging Light Using Ultrahigh-Q Photonic Crystal Nanocavity
26(1)
Slow Light with Photonic Crystal Nanocavity
26(4)
Compact Optical Add-Drop Filter
30(1)
All-Optical Switching
31(1)
Switching by Thermo-Optic Effect
32(2)
Switching by Carrier Plasma Dispersion Effect
34(1)
Numerical Study of Carrier Dynamics in Silicon Photonic Crystal
35(3)
5-GHz Return-to-Zero Pulse Train Modulation
38(1)
Accelerating the Speed of All-Optical Switches using Ion-Implantation Technology
39(2)
Ultra-Low Power Bistable Memory
41(4)
Optical Logic-On Chip
45(1)
Optical Flip-Flop
45(2)
Pulse Retiming Circuit
47(1)
Summary
48(5)
References
48(5)
Pillar Microcavities for Single-Photon Generation
53(80)
Charles Santori
David Fattal
Jelena Vuckovic
Matthew Pelton
Glenn S. Solomon
Edo Waks
David Press
Yoshihisa Yamamoto
Introduction
54(4)
Design and Fabrication
58(14)
Design of Pillar Microcavities
59(6)
Growth of QDs
65(3)
Fabrication of Pillar Structures
68(1)
First Generation
68(1)
Second Generation
69(3)
Third Generation
72(1)
Device Characterization
72(26)
Modifying Single QD Spontaneous Emission
73(1)
First and Second Generation
74(5)
Third Generation
79(1)
Photon Statistics
80(1)
Mechanism for Single-Photon Generation in QDs
81(2)
Experimental Results with Pillar DBR Devices
83(3)
Efficiency
86(3)
Photon Indistinguishability
89(6)
Strong Coupling
95(3)
Applications
98(27)
BB84 Quantum Key Distribution
99(3)
Entanglement Generation without a ``True'' Interaction
102(6)
Single-Mode Teleportation
108(6)
Coherent Single-Photon Emission and Trapping
114(1)
Coherent Photon Generation in Ideal Systems
115(4)
Performance of Practical Systems
119(1)
Performance as a Single-Photon Source
120(1)
Mathematical Details of the Theory
120(5)
Conclusions
125(8)
References
126(7)
Crystalline Whispering Gallery Mode Resonators in Optics and Photonics
133(78)
Lute Maleki
Vladimir S. Ilchenko
Anatoliy A. Savchenkov
Andrey B. Matsko
Introduction
134(1)
Fabrication Technique
135(2)
Coupling Techniques
137(7)
Critical Coupling
137(2)
Prism
139(3)
Angle-Cut Fiber
142(1)
Fiber Taper
142(1)
Planar Coupling
143(1)
Modal Structure and Spectrum Engineering
144(13)
The Spectrum and the Shape of the Resonator
145(2)
White Light Resonators
147(4)
Single-Mode Resonators
151(4)
Elliptical Resonators
155(2)
Quality Factor and Finesse of Crystalline Resonators
157(9)
Fundamental Limits
162(2)
Technical Limits
164(2)
Filters and Their Applications
166(21)
First-Order Filters
167(2)
Periodical Poling and Reconfigurable Filters
169(2)
Third-Order Filters
171(3)
Fifth-Order Filters
174(1)
Sixth-Order Filters
174(1)
Tuning of the Multi-Resonator Filter
175(3)
Resonator Coating Technique
178(1)
Insertion Loss
178(2)
Vertically Coupled Resonators
180(4)
Microwave Photonics Applications
184(1)
Opto-Electronic Oscillator
184(1)
Microwave Photonic Receivers
185(2)
Frequency Stability of WGM Resonators
187(13)
Fundamental Thermodynamic Limits
189(1)
Thermorefractive Fluctuations: Steady State
189(1)
Thermorefractive Fluctuations: Spectrum
190(3)
Thermoelastic and Thermal Expansion Fluctuations: Steady State
193(1)
Thermoelastic Fluctuations: Spectrum
193(1)
Thermal Expansion Fluctuations: Spectrum
194(2)
Fluctuations Originating from the Measurement Procedure
196(1)
Photothermal Fluctuations
196(1)
Ponderomotive Fluctuations
197(1)
Stabilization Scheme: An Example
198(1)
Applications for Laser Stabilization
199(1)
Conclusion
200(11)
References
201(10)
Microresonator-Based Devices on a Silicon Chip: Novel Shaped Cavities and Resonance Coherent Interference
211(54)
Andrew W. Poon
Xianshu Luo
Linjie Zhou
Chao Li
Jonathan Y. Lee
Fang Xu
Hui Chen
Nick K. Hon
Introduction
212(2)
Polygonal-Shaped Microdisk Resonators with Directional Coupling
214(13)
Overview of Polygonal-Shaped Microresonators
214(2)
N-Bounce Orbits in Polygonal-Shaped Microresonators
216(1)
Modes in Square-Shaped Microdisk Resonators
217(5)
Directional Coupling via Polygonal-Shaped Microdisk Flat Sidewalls
222(3)
Sharp Corner Radiative Loss and Corner Rounding
225(1)
Experimental Demonstrations
226(1)
Spiral-Shaped Microdisk Resonators with Nonevanescent Coupling
227(11)
Overview of Spiral-Shaped Microresonators
227(3)
Numerical Simulations
230(3)
Experimental Demonstrations
233(3)
Tilted Notch-Coupled Waveguide Design for Mode Matching
236(2)
Silicon Electro-Optic Modulators Using Microdisk Resonators
238(6)
Overview of Silicon Electro-Optic Modulators
238(1)
Principle of Microresonator-Based Modulators
239(1)
Microdisk Resonator-Based Modulators
240(1)
Experimental Demonstrations
241(1)
Toward GHz-Speed Microdisk Resonator-Based Modulators
241(3)
Coherent Interference of Optical Resonances
244(12)
Overview of Coherent Interference in Photonic Resonators
244(1)
Reconfigurable Microring Resonator-Based Add-Drop Filters Using Fano Resonances
245(3)
Coherent Interference between a Resonance Pathway and a Feedback Pathway
248(1)
Coherent Feedback-Coupled Filters
248(5)
Coherent Feedback-Coupled Modulators and Logic Devices
253(3)
Summary and Outlook
256(9)
Acknowledgments
257(1)
References
257(8)
Electro-Optic Polymer Ring Resonators for Millimeter-Wave Modulation and Optical Signal Processing
265(52)
William H. Steier
Byoung-Joon Seo
Bart Bortnik
Hidehisa Tazawa
Yu-Chueh Hung
Seongku Kim
Harold R. Fetterman
Introduction
266(1)
Ring Resonator Basics and EO Modulators and Switches
267(19)
Ring Resonator Basics
267(3)
Electro-Optic Ring Modulators
270(1)
Bandwidth of Ring Resonant Modulators
271(1)
Lumped Circuit Electrode
272(1)
Traveling Wave Electrode
272(5)
Electro-Optic Polymer Traveling-Wave Ring Modulator
277(1)
Fabrication
277(1)
Optical and Electro-Optical Properties
277(1)
Traveling Wave Electrode Properties
278(2)
Modulation at the First FSR Spacing of 28 GHz
280(3)
Modulation at Multiples of the FSR
283(3)
Optical Signal Processing Using Ring Resonator
286(31)
Theory
286(1)
Fundamentals of OSP
286(2)
Representations of OSP
288(1)
Operations of OSP
289(1)
Structure
290(1)
Analysis
291(1)
Configurable Couplers
292(1)
Racetrack
292(1)
MZ Section
293(1)
One-Block OSP
293(2)
Generality of One-Block OSP
295(1)
Verification and Operation
295(1)
Racetrack
296(1)
Configurable Couplers
297(1)
MZ Phase Shifter
298(1)
Summary of One-Block OSP
299(1)
Pole/Zero Locations Using One-Block OSP
300(1)
DC Operation
301(3)
Applications
304(1)
Arbitrary Waveform Generator
304(2)
Linearized Modulator
306(1)
True-Time Delay Element
307(3)
Discrete-Time Applications of OSP
310(3)
References
313(4)
Organic Micro-Lasers: A New Avenue onto Wave Chaos Physics
317(38)
Melanie Lebental
Eugene Bogomolny
Joseph Zyss
Introduction
318(1)
Introduction to Flat Organic Micro-Cavities
318(6)
Context
318(2)
Basic Elements
320(4)
Polymer-Based Technology and Process
324(3)
Materials
325(1)
Etching Methods
326(1)
Optical Tests
327(6)
Background
327(1)
Various Set-Up
328(1)
Spectra
329(4)
Theoretical Approaches
333(15)
General Methodology
334(1)
Spectrum
335(5)
Directions of Emission
340(4)
Light Patterns Inside the Cavities
344(1)
Benefit of ``Scarring''
344(2)
Perturbation Approach
346(2)
Conclusion
348(7)
Acknowledgments
349(1)
Appendix A: Lyapounov Coefficient for Unstable Periodic Orbits
349(1)
References
350(5)
Optical Microfiber Loop and Coil Resonators
355(30)
Misha Sumetsky
Introduction
355(1)
Microfiber Photonics
356(3)
Microfiber Loop Resonator (MLR)
359(11)
Theory of an MLR
359(1)
Transmission Amplitude
360(1)
Q-Factor, Extinction Ratio, and Finesse
361(1)
Models of Directional Coupling
362(1)
Experimental Demonstration and Applications of MLR
363(1)
MLR Fabricated by Macro-Manipulation
363(5)
Knot MLR Fabricated by Micro-Manipulation
368(2)
Microfiber Coil Resonator (MCR)
370(10)
Theory of an MCR
371(1)
Higher-Order MLR
372(1)
Uniform MCR
372(1)
MCR Transmission Line
373(2)
Experimental Demonstration and Application of MCR
375(1)
MCR in Air
375(2)
MCR in Low-Index Polymer
377(1)
MCR Microfluidic Sensor
378(2)
Conclusion
380(5)
References
381(4)
Optofluidic Ring Resonator Biological and Chemical Sensors
385(36)
Xudong Fan
Ian M. White
Siyka I. Shopova
Hongying Zhu
Jonathan D. Suter
Yuze Sun
Gilmo Yang
Introduction
386(3)
Background
386(1)
Optical Ring Resonator Biosensors
386(2)
Opto-Fluidic Ring Resonator (OFRR) Biosensors
388(1)
Theoretical Analysis
389(9)
Model
389(1)
Bulk Refractive Index Sensitivity (BRIS)
390(1)
Wall Thickness Dependence
391(1)
Mode Number Dependence
391(2)
OFRR Size Dependence
393(1)
Noise Analysis
393(1)
Thermally Induced Noise
393(1)
Amplitude Noise
394(1)
Pressure Induced Noise
395(1)
Relation between BRIS and the Sensitivity to Molecule Binding
396(1)
Detection Limit
397(1)
Experimental Investigations
398(15)
OFRR Fabrication
398(1)
Experimental Setup
399(1)
Q-Factor of the OFRR
400(1)
BRIS Characterization
401(1)
Characterization of Thermally-Induced Noise
401(1)
Surface Activation
402(1)
Bio/chemical Molecule Detection
403(1)
Protein Detection
403(2)
DNA Detection
405(2)
Virus Detection
407(1)
Bacterium and Whole Cell Detection
407(2)
Pesticide Detection
409(1)
Integration with Microfluidics
409(2)
Integration with Waveguides
411(1)
Integration with Antiresonant Reflecting Optical Waveguide (ARROW)
411(1)
Integration with Metal-Clad Waveguide
412(1)
Integration with Microfiber and Low Index Polymer
413(1)
Summary and Future Work
413(8)
Acknowledgments
413(1)
References
414(7)
A Non-Electronic Wireless Receiver with Immunity to Damage by Electromagnetic Pulses
421(26)
Bahram Jalali
Ali Ayazi
Rick Hsu
Andrew Yick
William H. Steier
Gary Betts
Introduction
422(1)
The ADNERF Concept
423(2)
Immunity to High EM Fields
425(1)
Thermal Consideration
426(2)
Temperature Dependence of Dielectric Antenna
428(1)
Receiver Sensitivity
428(2)
Choice of EO Material
430(1)
Receiver Dynamic Range
431(1)
RF Gain in the Optical Front-End
432(1)
Heterogeneous Dielectric Antenna for Wideband Operation
433(1)
Microwave Ceramics for Dielectric Antenna
434(1)
EO Resonator Design: Whispering Gallery Versus Fabry-Perot
434(2)
Optical Power Limit in a Resonant Field Sensor
436(1)
Maximum Power in Disk and Ring Resonators
436(1)
Fabry-Perot LiNbO3 Resonant Modulator
437(1)
Other Applications of the ADNERF Technology
437(1)
Competing Technologies
437(3)
Summary
440(7)
Acknowledgment
441(1)
Theory of Resonant EO Field Sensors
441(1)
Equivalent Eπ of Resonant Modulators
441(1)
Dynamic Range of Resonant EO Field Sensors
442(1)
Biasing for Maximum Signal
443(1)
Biasing for Minimum Distortion
443(1)
RF Gain in the Optical Front-End
444(1)
Example: LiNbO3 Resonant Modulator
445(1)
References
445(2)
Cavity Opto-Mechanics
447(36)
Tobias Jan Kippenberg
Kerry J. Vahala
Introduction
447(3)
Theoretical Framework of Dynamic Back-Action
450(12)
Coupled Mode Equations
450(2)
Modifications due to Dynamic Back-Action: Method of Retardation Expansion
452(5)
Sideband Formalism
457(5)
Opto-Mechanical Coupling and Displacement Measurements
462(4)
Mechanical Modes of Optical Microcavities
462(2)
Measuring the Opto-Mechanical Response
464(1)
Displacement Sensitivity
465(1)
Blue Detuning: Mechanical Gain and Parametric Oscillation Instability
466(5)
Threshold and Mode Selection Mechanisms
466(1)
Threshold Dependence on Optical Q and Mechanical Q
467(4)
Oscillation Linewidth
471(1)
Red Detuning: Radiation Pressure Cooling
471(7)
Experimental Setup
471(1)
Experimental Observation of Cooling
472(4)
Quantum Limits of Radiation Pressure Back-Action Cooling
476(1)
Physical Interpretation of the Quantum limits of Back-Action Cooling
477(1)
Summary and Outlook
478(5)
Acknowledgments
480(1)
References
480(3)
Optical Frequency Comb Generation in Monolithic Microresonators
483(24)
Olivier Arcizet
Albert Schliesser
Pascal Del'Haye
Ronald Holzwarth
Tobias Jan Kippenberg
Introduction to Optical Frequency Combs
483(2)
Frequency Comb Generation from a Monolithic Silica Microresonator
485(8)
Physics of the Comb Generation Process
485(3)
Verification of the Comb Spectrum Equidistance
488(1)
Multiheterodyne Spectroscopy
488(1)
Proving the Equidistance of the Mode Spacing at the mHz Level
489(2)
Dispersion in Toroidal Microresonators
491(2)
Stabilization of the Comb
493(6)
Principle
494(1)
Implementation
495(1)
Characterization of the Locking Mechanism
496(2)
Actuation Properties
498(1)
Generation of a Stabilized Microwave Repetition Rate Frequency Comb
499(4)
Monolithic Frequency Comb Generators with Microwave Repetition Rate
500(1)
Stabilization and Characterization of a Microwave Frequency Comb
501(2)
Conclusion
503(4)
Acknowledgments
504(1)
References
504(3)
Bit Rate Limitations in Single and Coupled Microresonators
507(22)
Jacob Khurgin
Introduction
507(1)
Single and Coupled Microresonators as Optical Delay Elements
508(5)
Single and Coupled Microresonators as Optical Switches
513(5)
Loss and GDD Limitations in CRS Delay Lines
518(6)
Mitigation of GDD
524(2)
Conclusions
526(3)
References
527(2)
Linear and Nonlinear Localization of Light in Optical Slow-Wave Structures
529(26)
Shayan Mookherjea
Introduction
529(2)
Waveguiding Principles and the Dispersion Relationship
531(3)
Waveguide Mode
531(1)
Dispersion Relationship
531(1)
Tail of the Dispersion Relationship
532(2)
Localization in the Presence of Disorder
534(5)
Nonlinear Localization
539(6)
Quadratic Dispersion at the Band Edge
539(1)
The Nonlinear Evolution Equation
540(1)
Time-Invariant Evolution
541(1)
The ``Super-Resonant'' Mode
542(2)
Nonlinear Anderson Localization
544(1)
Cascaded Versus Nested Coupled-Resonator Structures
545(5)
Slow Light in Fabry-Perot and Gires-Tournois Resonators
545(2)
Slow Light in the Coupled Fabry-Perot Structure
547(1)
Advantages and Disadvantages of the Nested Architecture
548(2)
Summary
550(5)
Acknowledgments
551(1)
References
551(4)
Index 555
Andrey B. Matsko has been a principal engineer with OEwaves Inc. since 2007. He has numerous publications in the field and holds several patents. His current research interests include applications of whispering gallery mode resonators in quantum and nonlinear optics, and photonics, coherence effects in resonant media, and quantum theory of measurements. He received JPLs Lew Allen Award for excellence in 2005.