Muutke küpsiste eelistusi

E-raamat: Practical Battery Design and Control

  • Formaat: 281 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819767
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 101,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 281 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819767
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Battery technologies play a vital role in day-to-day life, and with the continued growth of the battery market, there is an increasing demand for a comprehensive text such as this, that encompasses aspects of electrochemistry, materials science, physical chemistry, and machine learning. Aimed at early-to-mid career battery engineers, this book addresses common problems that are likely to be encountered on the job. This book discusses several topics, including the prediction of battery longevity, how to extend battery life with machine learning algorithms, cost reduction and sustainability, and battery charging problems relating to wearables, electric vehicles, drones, smart phones, laptops, and portable devices. Designed to help readers obtain practical knowledge through intuitive explanations and broad coverage of battery topics, this one-of-a-kind book is a must have resource for practicing battery engineers throughout their career.
Foreword xv
Preface xvii
Acknowledgments xix
1 Li-Ion Battery Overview And Spec
1(18)
1.1 Introduction: Battery History to Li-ion Battery
1(1)
1.2 Structure of the Li-ion Battery
1(1)
1.3 Intuitive Understanding of Charging/Discharging Mechanisms
2(3)
1.3.1 Charging Mechanism
2(2)
1.3.2 Discharging Mechanism
4(1)
1.3.3 Chemical Reactions During Charge and Discharge
4(1)
1.4 Key Innovations to Realize Li-ion Battery
5(1)
1.5 Necessary Battery Knowledge to Read a Battery Specification
6(9)
1.5.1 Basic Terminologies
7(2)
1.5.2 Battery Terminologies
9(2)
1.5.3 Battery Charging Spec
11(3)
1.5.4 Battery Cycle Life and Storage Life Spec
14(1)
1.6 Summary
15(1)
1.7 Problems
16(2)
References
18(1)
2 Application Of Electrochemistry To Batteries
19(16)
2.1 Introduction
19(1)
2.2 Battery Voltage Science and Application
19(9)
2.2.1 Li-ion Battery Voltage
19(1)
2.2.2 Energy Level Difference
20(2)
2.2.3 Nernst Equation and Application
22(1)
2.2.4 Standard Potential of Half Reaction
23(2)
2.2.5 Li-ion Battery Voltage Science
25(2)
2.2.6 Voltage of Future Batteries
27(1)
2.3 Application of Electrochemistry to Battery Design
28(3)
2.3.1 Faraday's Law of Electrolysis
28(1)
2.3.2 Amount of Cathode and Anode Needed
29(2)
2.4 Summary
31(1)
2.5 Problems
31(2)
References
33(2)
3 Battery Impedance And Its Impact On Battery Life
35(26)
3.1 Introduction
35(1)
3.2 Battery Impedance
35(17)
3.2.1 Ohm's Law and IR Drop
35(3)
3.2.2 Equivalent Circuit Model
38(4)
3.2.3 Impedance Measurement Method by Electrochemical Impedance Spectroscopy
42(7)
3.2.4 AC Impedance and DC Impedance
49(3)
3.3 Battery Discharging Characteristics
52(4)
3.3.1 Battery Discharging under Various Current Rates
52(1)
3.3.2 Battery Discharging at Various Temperatures
53(1)
3.3.3 Impedance Dependency on Cycles
54(2)
3.4 Usable Battery Capacity
56(2)
3.5 Summary
58(1)
3.6 Problems
58(2)
References
60(1)
4 Battery Charging And Impedance Impact
61(22)
4.1 Introduction
61(1)
4.2 Li-ion Battery Charging
61(7)
4.2.1 Constant Current-Constant Voltage Charging
61(1)
4.2.2 IRJump
62(2)
4.2.3 Reason Behind CC-CV Charging
64(2)
4.2.4 Charging Time Simulation
66(2)
4.3 Fast Battery Charging
68(7)
4.3.1 Continuous Fast Charging
68(2)
4.3.2 Step Charging
70(2)
4.3.3 Fast-Charging Time Simulation
72(1)
4.3.4 Four Key Elements for Battery Charging
73(2)
4.4 Safe Battery Charging
75(2)
4.4.1 Safety Guideline and Design
75(1)
4.4.2 Precharge
76(1)
4.5 Wireless Charging
77(2)
4.5.1 Introduction
77(1)
4.5.2 Theory and Structure
77(1)
4.5.3 Advantages and Disadvantages
78(1)
4.5.4 Essentials of Wireless Charging for Battery Engineers
79(1)
4.6 Summary
79(1)
4.7 Problems
80(2)
References
82(1)
5 Present And Future Batteries
83(20)
5.1 Introduction
83(1)
5.1.1 Introduction of Rechargeable Batteries
83(1)
5.1.2 Rechargeable Battery Usage
84(1)
5.2 Lead-Acid Battery
84(2)
5.2.1 Reactions
84(2)
5.2.2 Advantages and Disadvantages
86(1)
5.3 Ni-MH Battery
86(2)
5.3.1 Reactions
86(1)
5.3.2 Advantages and Disadvantages
87(1)
5.4 Li-ion Battery
88(9)
5.4.1 Cathode and Anode Options
88(1)
5.4.2 Details of Cathodes: LCO, NMC, NCA, and LFP
88(3)
5.4.3 Details of Anode: Silicon Versus Graphite
91(2)
5.4.4 Details of Anode: Lithium Metal
93(2)
5.4.5 All-Solid-State Battery
95(2)
5.4.6 Details of Anode: LTO
97(1)
5.5 Summary
97(1)
5.6 Problems
98(1)
References
99(4)
6 Li-Ion Battery Cell/Pack Design And Manufacturing/Recycling Process
103(34)
6.1 Inside a Li-ion Battery
103(10)
6.1.1 Battery Cell and Pack
103(1)
6.1.2 Cell Form Factors
103(3)
6.1.3 Battery Cell Structure
106(4)
6.1.4 Cell Manufacturing Process
110(2)
6.1.5 Thin-Film Battery Manufacturing Process
112(1)
6.2 Prevention of Hazardous Situations
113(9)
6.2.1 Hazardous Situations
113(1)
6.2.2 Battery Swelling
114(1)
6.2.3 Safety Protections from Failure Modes
115(3)
6.2.4 Quality Inspections
118(1)
6.2.5 Safe Battery Tests
119(3)
6.3 Battery Pack Configuration
122(10)
6.3.1 Series and Parallel
122(3)
6.3.2 Impact of Imbalanced Cells
125(5)
6.3.3 Shipping Regulations and Battery Certifications
130(1)
6.3.4 Authentication
130(1)
6.3.5 Communication Protocol to Battery Pack
131(1)
6.4 Sustainability and Recycling of Li-ion Batteries
132(1)
6.4.1 Recycle
132(1)
6.4.2 Reuse
132(1)
6.4.3 Reduce
133(1)
6.5 Summary
133(1)
6.6 Problems
133(2)
References
135(2)
7 Battery Fuel Gauging Methods
137(22)
7.1 Introduction
137(1)
7.2 Voltage Measurement
137(5)
7.2.1 Theory
138(2)
7.2.2 Advantages and Disadvantages
140(2)
7.3 Coulomb Counting
142(3)
7.3.1 Theory
142(1)
7.3.2 Advantages and Disadvantages
143(2)
7.4 Voltage Measurement and Coulomb Counting
145(1)
7.4.1 Theory
145(1)
7.4.2 Advantages and Disadvantages
146(1)
7.5 Impedance Consideration
146(2)
7.5.1 Theory
146(2)
7.5.2 Advantages and Disadvantages
148(1)
7.6 Advanced Fuel Gauging Examples
148(4)
7.6.1 OCV Prediction with an Equivalent Circuit Model
149(2)
7.6.2 SOC Prediction with Machine Learning
151(1)
7.6.3 Power Optimization Considering Battery Impedance
151(1)
7.7 State of Health
152(1)
7.8 System-Side Fuel Gauge Versus Pack-Side Fuel Gauge
153(1)
7.9 Summary
154(1)
7.10 Problems
155(1)
References
156(3)
8 Fuel Cell
159(18)
8.1 Introduction
159(1)
8.2 Hydrogen Fuel Cell
159(2)
8.2.1 Theory
159(1)
8.2.2 Structure
160(1)
8.3 Fuel Cell Characteristics
161(4)
8.3.1 Current Versus Voltage: 1-V Curve
161(3)
8.3.2 Current Versus Power: 1-P Curve
164(1)
8.3.3 Sporadic Current Change and Voltage Response
164(1)
8.4 Temperature and Pressure Impacts on Performance
165(3)
8.4.1 Application of Nernst Equation to Fuel Cell
165(1)
8.4.2 Pressure Impact on Voltage and Performance
166(1)
8.4.3 Temperature Impact on Voltage
167(1)
8.5 Other Fuel Cells
168(3)
8.5.1 Direct Methanol Fuel Cell
168(1)
8.5.2 Solid Oxide Fuel Cell
169(2)
8.6 Fuel Cells Comparison to Li-ion Battery
171(1)
8.7 Fuel Cell Experiments with a Hydrogen Fuel-Cell Kit
172(2)
8.8 Summary
174(1)
8.9 Problems
174(2)
References
176(1)
9 Other Battery-Related Technologies
177(32)
9.1 Introduction
177(1)
9.2 Supercapacitors
177(8)
9.2.1 Theory
177(2)
9.2.2 Structure
179(1)
9.2.3 Advantages and Disadvantages
180(2)
9.2.4 Energy Calculation
182(1)
9.2.5 Li-ion Capacitor
183(2)
9.3 Solar Cell
185(10)
9.3.1 Introduction
185(1)
9.3.2 Total Energy from the Sun and Efficiency of a Commercial Solar Cell
185(2)
9.3.3 Theory
187(2)
9.3.4 Structure
189(1)
9.3.5 l-V Curve and Maximum Power Point
190(1)
9.3.6 Value of Solar Cells on Electric Vehicles
191(1)
9.3.7 Transparent Solar Cell
192(3)
9.3.8 Other Solar Cell Technologies
195(1)
9.4 Energy Harvesting
195(3)
9.4.1 Kinetic
195(1)
9.4.2 Thermoelectric Generator
196(1)
9.4.3 Radio Frequency
197(1)
9.5 Heat Transfer
198(7)
9.5.1 Heat Transfer Mechanism
199(1)
9.5.2 Conduction: Fourier's Law of Heat Conduction
199(1)
9.5.3 Convection: Newton's Law of Cooling
199(2)
9.5.4 Radiation: Stefan-Boltzmann Law
201(1)
9.5.5 Thermal Modeling and Control
201(4)
9.6 Summary
205(1)
9.7 Problems
205(2)
References
207(2)
10 Battery Algorithms For Longevity Estimation And Extension
209(16)
10.1 Battery Cycle Life and Shelf Life
210(4)
10.1.1 Battery Longevity Spec
210(1)
10.1.2 Battery Degradation Mechanism
210(2)
10.1.3 Degradation Difference by Battery Voltages
212(2)
10.2 Battery Degradation by Temperatures and its Estimation
214(3)
10.2.1 Longevity Dependency on Temperature and Arrhenius Equation
214(1)
10.2.2 Application of Arrhenius Equation to Estimate Battery Degradation
214(1)
10.2.3 Battery Degradation Estimation by Temperature
214(3)
10.3 Longevity Extension by Adaptive Charging
217(4)
10.3.1 Introduction of Adaptive Charging
217(1)
10.3.2 Adaptive Charging by Scheduling Application
218(2)
10.3.3 Adaptive Charging Through Overnight Charging: Delayed Charging
220(1)
10.3.4 Adaptive Charging by Situations: Situational Charging
220(1)
10.4 Summary
221(1)
10.5 Problems
222(2)
References
224(1)
11 Battery Application To Various Systems
225(12)
11.1 Wearables
225(2)
11.1.1 Battery Usage in Wearables
225(1)
11.1.2 Method to Extend Battery Life
226(1)
11.2 Smartphones, Tablets, and Laptop PCs
227(1)
11.2.1 Battery Usage in Portable Systems
227(1)
11.2.2 Method to Avoid Sudden System Shutdown and Extend Battery Life
228(1)
11.3 Drones
228(2)
11.3.1 Battery Usage in Drones
228(1)
11.3.2 Requirements for Drone Batteries
229(1)
11.4 IoT Devices
230(3)
11.4.1 Example of IoT Batteries
230(1)
11.4.2 Batteries for IoT Devices and Consideration in Selection
230(3)
11.5 Backup/Stationary Battery
233(2)
11.5.1 Examples of Backup/Stationary Battery
233(1)
11.5.2 Requirements to Backup/Stationary Battery
234(1)
11.6 Batteries for Electric Vehicles
235(2)
11.6.1 EV Battery Usage and Requirements
235(1)
11.6.2 Algorithms for EV Batteries
236(1)
1 1.7 Key Consideration for Longer Battery Life
237(4)
11.8 Summary
238(1)
11.9 Problem
238(1)
References
239(2)
12 Ai/Machine-Learning/Deep-Learning Application To Battery Charging
241(28)
12.1 Introduction
241(1)
12.2 Difference Between Al, ML, and DL
242(1)
12.3 Programming Environment Setup
243(1)
12.4 Machine Learning
243(8)
12.4.1 ML Example: Regression Problem Case with Algebra
244(5)
12.4.2 ML Example: Classification Problem Case
249(1)
12.4.3 Other ML Models
250(1)
12.5 Deep Learning
251(3)
12.5.1 Neural Network and Deep Learning
251(2)
12.5.2 DL Applications in the Real World
253(1)
12.6 Typical Steps in ML/DL Development
254(3)
12.7 Context-Based Battery Charging: ML/DL Application to Extend Battery Longevity
257(6)
12.7.1 Introduction
257(1)
12.7.2 Procedure of Context-Based Battery Charging
258(2)
12.7.3 Results of Context-Based Battery Charging
260(3)
12.8 Typical Questions and Answers
263(1)
12.9 Summary
263(1)
12.10 Problem
264(2)
References
266(3)
About The Author 269(2)
Index 271