About the Authors |
|
xix | |
Acknowledgments |
|
xxi | |
Preface |
|
xxiii | |
Part 1: Basics of SAS Programming for Analytics |
|
1 | (144) |
|
Chapter 1 Introduction to Business Analytics and Data Analysis Tools |
|
|
3 | (26) |
|
Business Analytics, the Science of Data-Driven Decision Making |
|
|
3 | (5) |
|
Business Analytics Defined |
|
|
3 | (2) |
|
Is Advanced Analytics the Solution for You? |
|
|
5 | (1) |
|
Simulation, Modeling, and Optimization |
|
|
6 | (1) |
|
Data Warehousing and Data Mining |
|
|
7 | (1) |
|
What Can Be Discovered Using Data Mining? |
|
|
7 | (1) |
|
Business Intelligence, Reporting, and Business Analytics |
|
|
8 | (1) |
|
Analytics Techniques Used in the Industry |
|
|
8 | (6) |
|
Regression Modeling and Analysis |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (1) |
|
Principal Components and Factor Analysis |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
Some Practical Applications of Business Analytics |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
Big Data vs. Conventional Business Analytics |
|
|
15 | (12) |
|
|
15 | (5) |
|
Introduction to Data Analysis Tools |
|
|
20 | (2) |
|
Main Parts of SAS, SPSS, and R |
|
|
22 | (5) |
|
Selection of Analytics Tools |
|
|
27 | (1) |
|
The Background Required for a Successful Career in Business Analytics |
|
|
27 | (1) |
|
Skills Required for a Business Analytics Professional |
|
|
27 | (1) |
|
|
28 | (1) |
|
Chapter 2 SAS Introduction |
|
|
29 | (26) |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
31 | (11) |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
35 | (5) |
|
|
40 | (1) |
|
|
41 | (1) |
|
Important Menu Options and Icons |
|
|
42 | (4) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
Writing and Executing a SAS Program |
|
|
46 | (9) |
|
|
47 | (1) |
|
|
48 | (2) |
|
Debugging SAS Code Using a Log File |
|
|
50 | (2) |
|
Example for Warnings in Log File |
|
|
52 | (1) |
|
Tips for Writing, Reading the Log File, and Debugging |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
Chapter 3 Data Handling Using SAS |
|
|
55 | (40) |
|
|
56 | (2) |
|
Descriptive Portion of SAS Data Sets |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (10) |
|
Creating the Library Using the GUI |
|
|
59 | (5) |
|
Rules of Assigning a Library |
|
|
64 | (1) |
|
Creating a New Library Using SAS Code |
|
|
64 | (1) |
|
Permanent and Temporary Libraries |
|
|
65 | (3) |
|
Two Main Types of SAS Statements |
|
|
68 | (1) |
|
|
68 | (12) |
|
Data Set Creation Using the SAS Program |
|
|
68 | (2) |
|
|
70 | (7) |
|
|
77 | (3) |
|
|
80 | (13) |
|
Making a Copy of a SAS Data Set |
|
|
80 | (2) |
|
|
82 | (5) |
|
Updating the Same Data Set |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (3) |
|
|
93 | (2) |
|
Chapter 4 Important SAS Functions and Procs |
|
|
95 | (50) |
|
|
95 | (13) |
|
|
96 | (5) |
|
|
101 | (4) |
|
|
105 | (3) |
|
|
108 | (12) |
|
|
108 | (1) |
|
|
108 | (4) |
|
|
112 | (8) |
|
|
120 | (9) |
|
|
121 | (4) |
|
|
125 | (4) |
|
|
129 | (14) |
|
|
129 | (2) |
|
|
131 | (1) |
|
|
132 | (2) |
|
|
134 | (9) |
|
|
143 | (2) |
Part 2: Using SAS for Business Analytics |
|
145 | (396) |
|
Chapter 5 Introduction to Statistical Analysis |
|
|
147 | (18) |
|
|
147 | (2) |
|
Basic Statistical Concepts in Business Analytics |
|
|
149 | (11) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
Variable Types in Predictive Modeling Context |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (8) |
|
Statistical Analysis Methods |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
Solving a Problem Using Statistical Analysis |
|
|
161 | (2) |
|
Setting Up Business Objective and Planning |
|
|
161 | (1) |
|
|
161 | (1) |
|
Descriptive Analysis and Visualization |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
162 | (1) |
|
An Example from the Real World: Credit Risk Life Cycle |
|
|
163 | (1) |
|
Business Objective and Planning |
|
|
163 | (1) |
|
|
163 | (1) |
|
Descriptive Analysis and Visualization |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
Chapter 6 Basic Descriptive Statistics and Reporting in SAS |
|
|
165 | (32) |
|
Rudimentary Forms of Data Analysis |
|
|
165 | (3) |
|
|
165 | (1) |
|
Print and Various Options of Print in SAS |
|
|
165 | (3) |
|
|
168 | (28) |
|
|
169 | (4) |
|
Calculating Central Tendencies in SAS |
|
|
173 | (4) |
|
|
177 | (5) |
|
Calculating Dispersion Using SAS |
|
|
182 | (3) |
|
|
185 | (2) |
|
Calculating Quantiles Using SAS |
|
|
187 | (2) |
|
|
189 | (3) |
|
Creating Boxplots Using SAS |
|
|
192 | (4) |
|
|
196 | (1) |
|
|
196 | (1) |
|
Chapter 7 Data Exploration, Validation, and Data Sanitization |
|
|
197 | (64) |
|
Data Exploration Steps in a Statistical Data Analysis Life Cycle |
|
|
197 | (4) |
|
Example: Contact Center Call Volumes |
|
|
198 | (3) |
|
Need for Data Exploration and Validation |
|
|
201 | (3) |
|
Issues with the Real-World Data and How to Solve Them |
|
|
204 | (2) |
|
|
204 | (1) |
|
|
205 | (1) |
|
Manual Inspection of the Dataset Is Not a Practical Solution |
|
|
205 | (1) |
|
Removing Records Is Not Always the Right Way |
|
|
205 | (1) |
|
Understanding and Preparing the Data |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
Data Exploration, Validation, and Sanitization Case Study: Credit Risk Data |
|
|
207 | (52) |
|
|
210 | (1) |
|
Step 1: Data Exploration and Validation Using the PROC CONTENTS |
|
|
211 | (3) |
|
Step 2: Data Exploration and Validation Using Data Snapshot |
|
|
214 | (7) |
|
Step 3: Data Exploration and Validation Using Univariate Analysis |
|
|
221 | (11) |
|
Step 4: Data Exploration and Validation Using Frequencies |
|
|
232 | (7) |
|
Step 5: The Missing Value and Outlier Treatment |
|
|
239 | (20) |
|
|
259 | (2) |
|
Chapter 8 Testing of Hypothesis |
|
|
261 | (34) |
|
Testing: An Analogy from Everyday Life |
|
|
261 | (1) |
|
What Is the Process of Testing a Hypothesis? |
|
|
262 | (21) |
|
State the Null Hypothesis on the Population: Null Hypothesis (H0) |
|
|
266 | (1) |
|
Alternate Hypothesis (H1) |
|
|
266 | (1) |
|
|
267 | (2) |
|
|
269 | (3) |
|
|
272 | (2) |
|
|
274 | (5) |
|
Critical Values and Critical Region |
|
|
279 | (1) |
|
|
280 | (3) |
|
|
283 | (10) |
|
|
283 | (1) |
|
Case Study: Testing for the Mean in SAS |
|
|
283 | (3) |
|
|
286 | (1) |
|
Two-Tailed and Single-Tailed Tests |
|
|
287 | (6) |
|
|
293 | (2) |
|
Chapter 9 Correlation and Linear Regression |
|
|
295 | (56) |
|
|
295 | (23) |
|
Pearson's Correlation Coefficient (r) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
Calculating Correlation Coefficient Using SAS |
|
|
298 | (3) |
|
Correlation Limits and Strength of Association |
|
|
301 | (5) |
|
Properties and Limitations of Correlation Coefficient (r) |
|
|
306 | (1) |
|
Some Examples on Limitations of Correlation |
|
|
306 | (6) |
|
Correlation vs. Causation |
|
|
312 | (1) |
|
|
313 | (5) |
|
|
318 | (1) |
|
|
318 | (7) |
|
Correlation to Regression |
|
|
320 | (2) |
|
|
322 | (3) |
|
|
325 | (19) |
|
Regression Line Fitting Using Least Squares |
|
|
325 | (2) |
|
The Beta Coefficients: Example 1 |
|
|
327 | (1) |
|
|
328 | (7) |
|
|
335 | (9) |
|
When Linear Regression Can't Be Applied |
|
|
344 | (1) |
|
Simple Regression: Example |
|
|
345 | (4) |
|
|
349 | (2) |
|
Chapter 10 Multiple Regression Analysis |
|
|
351 | (50) |
|
Multiple Linear Regression |
|
|
351 | (44) |
|
|
353 | (1) |
|
Multiple Regression Line Fitting Using Least Squares |
|
|
354 | (1) |
|
Multiple Linear Regression in SAS |
|
|
355 | (1) |
|
Example: Smartphone Sales Estimation |
|
|
355 | (2) |
|
|
357 | (1) |
|
Three Main Measures from Regression Output |
|
|
358 | (25) |
|
Multicollinearity Defined |
|
|
383 | (12) |
|
How to Analyze the Output: Linear Regression Final Check List |
|
|
395 | (4) |
|
Double-Check for the Assumptions of Linear Regression |
|
|
395 | (1) |
|
|
395 | (1) |
|
|
395 | (1) |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
396 | (1) |
|
Analyzing the Regression Output: Final Check List Example |
|
|
396 | (3) |
|
|
399 | (2) |
|
Chapter 11 Logistic Regression |
|
|
401 | (40) |
|
Predicting Ice-Cream Sales: Example |
|
|
401 | (3) |
|
|
404 | (3) |
|
|
407 | (1) |
|
Logistic Regression Using SAS |
|
|
408 | (2) |
|
SAS Logistic Regression Output Explanation |
|
|
410 | (5) |
|
Output Part 1: Response Variable Summary |
|
|
410 | (2) |
|
Output Part 2: Model Fit Summary |
|
|
412 | (1) |
|
Output Part 3: Test for Regression Coefficients |
|
|
412 | (1) |
|
Output Part 4: The Beta Coefficients and Odds Ratio |
|
|
413 | (2) |
|
Output Part 5: Validation Statistics |
|
|
415 | (1) |
|
Individual Impact of Independent Variables |
|
|
415 | (1) |
|
Goodness of Fit for Logistic Regression |
|
|
416 | (3) |
|
|
416 | (1) |
|
|
417 | (2) |
|
Prediction Using Logistic Regression |
|
|
419 | (1) |
|
Multicollinearity in Logistic Regression |
|
|
419 | (2) |
|
No VIF Option in PROC LOGISTIC |
|
|
421 | (1) |
|
Logistic Regression Final Check List |
|
|
421 | (1) |
|
Loan Default Prediction Case Study |
|
|
422 | (18) |
|
Background and Problem Statement |
|
|
422 | (1) |
|
|
422 | (1) |
|
|
422 | (4) |
|
|
426 | (12) |
|
Final Model Equation and Prediction Using the Model |
|
|
438 | (2) |
|
|
440 | (1) |
|
Chapter 12 Time-Series Analysis and Forecasting |
|
|
441 | (68) |
|
What Is a lime-Series Process? |
|
|
441 | (4) |
|
Main Phases of Time-Series Analysis |
|
|
445 | (1) |
|
|
445 | (1) |
|
|
446 | (6) |
|
|
446 | (1) |
|
|
446 | (2) |
|
|
448 | (2) |
|
|
450 | (2) |
|
Understanding ARIMA Using an Eyesight Measurement Analogy |
|
|
452 | (1) |
|
Steps in the Box-Jenkins Approach |
|
|
453 | (54) |
|
Step 1: Testing Whether the Time Series Is Stationary |
|
|
454 | (11) |
|
Step 2: Identifying the Model |
|
|
465 | (32) |
|
Step 3: Estimating the Parameters |
|
|
497 | (4) |
|
Step 4: Forecasting Using the Model |
|
|
501 | (2) |
|
Case Study: Time-Series Forecasting Using the SAS Example |
|
|
503 | (3) |
|
Checking the Model Accuracy |
|
|
506 | (1) |
|
|
507 | (2) |
|
Chapter 13 Introducing Big Data Analytics |
|
|
509 | (32) |
|
Traditional Data-Handling Tools |
|
|
509 | (2) |
|
|
509 | (1) |
|
|
510 | (1) |
|
Examples of the Growing Size of Data |
|
|
510 | (1) |
|
|
511 | (3) |
|
The Three Main Components of Big Data |
|
|
511 | (2) |
|
Applications of Big Data Analytics |
|
|
513 | (1) |
|
The Solution for Big Data Problems |
|
|
514 | (1) |
|
|
514 | (1) |
|
|
515 | (2) |
|
|
515 | (1) |
|
|
515 | (2) |
|
|
517 | (7) |
|
Hadoop Distributed File System |
|
|
517 | (2) |
|
|
519 | (1) |
|
|
520 | (1) |
|
|
521 | (1) |
|
Other Tools in the Hadoop Ecosystem |
|
|
521 | (2) |
|
Companies That Use Hadoop |
|
|
523 | (1) |
|
Big Data Analytics Example |
|
|
524 | (16) |
|
Examining the Business Problem |
|
|
524 | (1) |
|
|
525 | (1) |
|
|
525 | (2) |
|
Looking at the Hadoop Components |
|
|
527 | (2) |
|
Moving Data from the Local System to Hadoop |
|
|
529 | (1) |
|
|
530 | (4) |
|
|
534 | (1) |
|
Creating a Table Using Hive |
|
|
535 | (1) |
|
Executing a Program Using Hive |
|
|
536 | (1) |
|
Viewing the MapReduce Status |
|
|
537 | (2) |
|
|
539 | (1) |
|
|
540 | (1) |
Index |
|
541 | |