Muutke küpsiste eelistusi

E-raamat: Practical ESM Analysis

  • Formaat: 460 pages
  • Ilmumisaeg: 31-Jan-2019
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630815301
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 460 pages
  • Ilmumisaeg: 31-Jan-2019
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630815301
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Written by a prominent expert in the field, this authoritative resource considers radar parameters and how they affect ESM systems. It describes the ESM environment, including types of radar, pulse density, the latest radar developments and how they will be seen by ESM systems. Different types of ESM systems are described, with methods of calculation of Direction of Arrival (DOA) of pulses. Conventional wisdom about RF scan strategies for narrow-band receivers will be challenged and new methods (proven to be effective in trials) will be proposed. The book describes ESM Antenna separation, which plays a significant part in the generation of DOA errors, with examples of the effects for different situations. The book will explain the common phenomena seen in ESM systems with many examples of how to recognize issues in the ESM data and solutions for their mitigation. Techniques for visualizing ESM data and how to set up ESM trials will be given, including the simulation of the electromagnetic environment. The book also presents detailed calculations for generating emitter beam-shapes for use in simulations of pulse trains and the calculation of detection range will be useful for data analysts, trials engineers and system assessors, which are not published elsewhere. The identification of radars by ESM systems is considered in detail with ideas presented on how to generate an effective radar library.
Preface xiii
Chapter 1 Introduction to Electronic Support Measures Systems
1(6)
1.1 ESM Systems: Painting a Picture of the RF Environment
2(2)
1.2 ESM as an ELINT System
4(1)
1.3 ESM as a Radar Warning Receiver
5(1)
1.4 ESM Operators and Platforms
5(1)
1.5 Topics Unique to This Book
5(2)
1.5.1 Radar Beamshape Calculation
5(1)
1.5.2 RF Scan Strategy Generation
6(1)
1.5.3 Multipath Considerations
6(1)
1.5.4 Multitracking Mitigation
6(1)
1.5.5 Radar Identification Improvements 6 Reference
6(1)
Chapter 2 Radar Parameters and How They Affect ESM Systems
7(28)
2.1 Pulsed and Continuous-Wave Radars
7(1)
2.2 Pulse Descriptor Words
8(1)
2.3 Radar Frequency
9(2)
2.3.1 RF Agility
10(1)
2.4 Pulse Repetition Internal
11(6)
2.4.1 Fixed PRI
12(1)
2.4.2 Staggered PRI
13(1)
2.4.3 Jittered PRI
13(1)
2.4.4 Switch and Dwell PRI
13(3)
2.4.5 Pulse Group Repetition Interval
16(1)
2.5 Pulse Width
17(1)
2.5.1 Pulse Rise Times
17(1)
2.6 Pulse Modulation
17(3)
2.7 Radar Beamshapes
20(4)
2.8 Scan Patterns
24(6)
2.8.1 Circular Scan
24(1)
2.8.2 Sector Scan
24(1)
2.8.3 Raster Scan
25(1)
2.8.4 Spiral Scan
25(1)
2.8.5 Helical Scan
25(1)
2.8.6 Conical Scan
26(2)
2.8.7 Palmer Scan
28(1)
2.8.8 Nodding Scan
28(1)
2.8.9 Lobe Switching
28(1)
2.8.10 Track-While-Scan
29(1)
2.8.11 Fixed (Locked On)
30(1)
2.8.12 Multiple Elevation Beam
30(1)
2.8.13 AESA Radar Scan
30(1)
2.9 Effective Radiated Power
30(2)
2.10 Polarization
32(3)
References
33(2)
Chapter 3 The RF Environment
35(22)
3.1 The Radar Range Equation and ESM systems
35(1)
3.2 Radar Horizon
36(1)
3.3 Types of Radar and Their Functions
37(7)
3.3.1 ATC Radars
38(2)
3.3.2 HS Radars
40(1)
3.3.3 Airborne Radars
40(1)
3.3.4 Ship Navigation Radars
41(1)
3.3.5 Weather Radars
41(1)
3.3.6 Threat Radars
42(1)
3.3.7 Cellular/Mobile Phones
43(1)
3.3.8 Low Probability of Intercept Radars
44(1)
3.3.9 AESA Radars
44(1)
3.4 Radar Pulse Density
44(1)
3.5 Example of Low-Pulse Density Environment: South Australia
45(4)
3.6 Example of High-Pulse Density Environment: Straits of Malacca
49(2)
3.7 Number of Pulses Needed for ESM Detection
51(6)
References
55(2)
Chapter 4 ESM Equipment
57(22)
4.1 ESM Antennas
57(4)
4.1.1 Spiral Antennas
57(2)
4.1.2 Sinuous Antennas
59(1)
4.1.3 Horn Antennas
59(1)
4.1.4 Antennas for Phase Comparison Systems
59(1)
4.1.5 Spinning Antennas
60(1)
4.2 ESM Receivers
61(3)
4.2.1 Superheterodyne Receivers
61(1)
4.2.2 Crystal Video Receivers
62(1)
4.2.3 Instantaneous Frequency Measurement (IFM) Receivers
62(1)
4.2.4 Channelized Receivers
63(1)
4.3 Parameter Measurement, Accuracy, and Resolution
64(5)
4.3.1 RF
64(1)
4.3.2 Timing
65(2)
4.3.3 PW
67(1)
4.3.4 Amplitude
67(1)
4.3.5 PRI Calculation
67(1)
4.3.6 DOA Calculation
68(1)
4.4 ESM Sensitivity
69(5)
4.4.1 Target Acquisition
73(1)
4.4.2 Target Tracking
73(1)
4.4.3 Missile Guidance and Target Illumination Radars
73(1)
4.4.4 Beacon Interrogators and Missile Beacon Signals
73(1)
4.4.5 Missile Homing Systems Seekers
74(1)
4.5 RF Scan Strategies
74(5)
References
77(2)
Chapter 5 Amplitude Comparison ESM
79(18)
5.1 DOA determination in Amplitude Comparison Systems
79(3)
5.2 Typical Amplitude Comparison Antenna Configurations
82(1)
5.3 Effect of the ESM Antenna Separation on DOA Determination
83(2)
5.4 DOA Errors Due to ESM Antenna Separation
85(4)
5.5 Effect of Radar Beamshape on DOA Error
89(2)
5.6 Effect of Elevation on DOA Error
91(1)
5.7 Solutions to ESM Antenna Separation Problem
92(5)
5.7.1 Colocate the ESM Antennas
92(1)
5.7.2 Use Pulses from the Peak of the Radar Beam
93(1)
5.7.3 Adjust Antenna Activation Levels to Give an Indication of DOA Error
93(2)
References
95(2)
Chapter 6 Time Difference of Arrival ESM
97(22)
6.1 DOA Determination in TDOA ESM Systems
97(2)
6.2 TOA Measurement
99(2)
6.3 ESM Antenna Separation Effect
101(4)
6.4 Effect of ESM Sensitivity on DOA Errors
105(1)
6.5 Effect of ESM Antenna Beamshape on DOA Calculation
106(3)
6.6 Effect of ESM Antenna Configuration on DOA Calculation and Resolution
109(5)
6.7 TDOA Histograms and DOA Uncertainty
114(5)
Chapter 7 Phase Comparison/Interferometer ESM
119(14)
7.1 DOA Calculation in Phase Comparison Systems
119(3)
7.2 Effect of Antenna Separation on DOA Calculation
122(2)
7.3 Resolution of DOA
124(1)
7.4 Effect of Radar Beamshape
124(2)
7.5 Effect of Pulse Modulation
126(3)
7.6 Effect of Pulse Shape
129(1)
7.7 Effect of Radar RF
130(1)
7.8 Phase Comparison Systems in Practice
130(2)
7.9 Long Baseline Phase Comparison ESM Systems
132(1)
Chapter 8 Deinterleavers and ESM Processing
133(12)
8.1 Deinterleaving Techniques
134(1)
8.2 DO A/Frequency or DTO A/Frequency Cluster Algorithms
134(1)
8.3 Time of Arrival Difference Histogram
135(4)
8.4 Predictive Gates
139(1)
8.5 Graph Theory Deinterleaver
139(1)
8.6 Radar Clock Period Deinterleavers
140(2)
8.7 Parameter Classification Algorithms
142(1)
8.8 Track Formation
143(2)
References
144(1)
Chapter 9 Intercept-to-Track Correlation
145(14)
9.1 The Intercept-to-Track Correlation Process
145(4)
9.2 Overlapping Parameter Ranges
149(3)
9.3 Overmerging of Tracks
152(2)
9.4 Effect of Identity on ESM Track Formation
154(2)
9.5 Identification Ambiguity
156(1)
9.6 Solutions for Overmerging of Tracks
156(3)
References
157(2)
Chapter 10 Radar Identification and ESM Radar Libraries
159(16)
10.1 Radar Parameters for an ESM Library
160(1)
10.2 Data Records for an ESM Library
160(1)
10.3 Library Matching Using Parameter Weighting
160(2)
10.4 Library Matching Using Parameter Scoring
162(1)
10.5 Library Matching Using Parameter Tolerances
163(1)
10.6 User Interfaces for Reprogramming ESM Libraries
164(1)
10.7 Methods for Optimizing Library Matching
165(10)
10.7.1 Use Generic Library Entries for Some Types of Radar
166(1)
10.7.2 Library Matching Using the Way That ESM Systems See Radars
167(2)
10.7.3 A Layered Approach to Identification
169(1)
10.7.4 Use of Measured Parameter Dispersions
169(2)
10.7.5 Use Sensible Tolerances for ESM Correlation and Library Matching
171(1)
10.7.6 Use A Priori Information
171(1)
10.7.7 Use of Specific Emitter Identification Data
172(3)
Chapter 11 Radar Location Estimation
175(20)
11.1 Location Calculation
175(5)
11.2 Location Error Ellipse
180(4)
11.3 How to Draw an Error Ellipse
184(1)
11.4 Radar Location in Practice
185(1)
11.5 Issues with Radar Location
185(5)
11.5.1 Magnitude of DOA Error
186(1)
11.5.2 Intercept-to-Track Correlation
186(1)
11.5.3 Orientation of the Error Ellipse
187(1)
11.5.4 Sparse Data Sets
188(1)
11.5.5 Multiple Radars of the Same Type
189(1)
11.6 Multiplatform TDOA for Radar Location Estimation
190(1)
11.7 FDOA Measurement of Radar Location
191(1)
11.8 Amplitude in Radar Location Estimation
192(2)
11.9 The Use of Extended Kalman Filters for Range-Finding
194(1)
References
194(1)
Chapter 12 ESM Performance Analysis
195(24)
12.1 Data Recording and Required Data Capacity
195(4)
12.1.1 ESM Pulse Data
195(1)
12.1.2 ESM Intercept Data
196(1)
12.1.3 ESM Track Data
196(1)
12.1.4 ESM Status, BIT, and Alarm Data
196(2)
12.1.5 Platform Navigation Data
198(1)
12.1.6 Ground Truth
198(1)
12.1.7 AIS Data
199(1)
12.1.8 ESM Radar Library
199(1)
12.2 ESM Performance Visualization
199(1)
12.3 DOA Performance Assessment
200(1)
12.4 ESM Track Analysis
201(4)
12.5 Pulse Data Analysis
205(3)
12.6 AOA Analysis
208(3)
12.7 TDOA Histograms
211(1)
12.8 Parameter Histograms
212(1)
12.9 Location Accuracy
212(3)
12.10 Probability of Intercept
215(2)
12.11 Track Fragmentation
217(1)
12.12 Accuracy of Identification/Ambiguity
218(1)
12.13 Automation of ESM Analysis
218(1)
Chapter 13 ESM Testing and Trials
219(18)
13.1 Laboratory Testing
219(1)
13.2 Dedicated Test Ranges
220(1)
13.3 The Need for Real-World ESM Testing
221(1)
13.4 Planning for an ESM Test or Trial
221(4)
13.4.1 Setting Test/Trial Objectives
221(1)
13.4.2 The Choice of a Trial Area
222(1)
13.4.3 Aircraft Flight Profile
222(1)
13.4.4 Aircraft Altitude
223(1)
13.4.5 Determination of Ground Truth
224(1)
13.4.6 Preflight Data and Simulation Needed Before Testing Takes Place
224(1)
13.5 Example of an ESM Test/Trial Preparation
225(1)
13.5.1 Test/Trial Objectives
225(1)
13.5.2 ESM Platform Parameters
225(1)
13.6 Preflight Preparations
226(3)
13.6.1 Selection of Aircraft Route
226(1)
13.6.2 Simulation of the RF Environment
227(2)
13.7 Postflight Data Analysis
229(8)
13.7.1 Visualization of the Operator's Screen/Replay of Recorded Data
229(1)
13.7.2 Calculation of Ground Truth
230(1)
13.7.3 Analysis of ESM Track Data
231(1)
13.7.4 Analysis of ESM Pulse Data
232(3)
References
235(2)
Chapter 14 Multitracking
237(18)
14.1 Causes of Multitracking
237(1)
14.2 DOA Errors Due to Antenna Separation
238(1)
14.3 DOA Errors Due to Multipath Interference
238(1)
14.4 PRI Calculation Errors Due to DOA Errors
239(2)
14.5 PRI Errors Due to Missing Pulses
241(3)
14.6 PRI Errors Due to Complex PRI Sequences
244(1)
14.7 PRI Errors Due to PW Measurement Errors
245(2)
14.8 PW Measurement Errors
247(2)
14.9 RF Agility
249(2)
14.10 Methods to Reduce Multitracking
251(4)
14.10.1 Improve DOA Measurement
251(1)
14.10.2 Ignore Intercepts with Poor DOA
251(1)
14.10.3 Design the PRI Calculation Algorithm to Allow for Missing Pulses
251(1)
14.10.4 Define a PRI Quality Measure
252(1)
14.10.5 Use a Realistic Number of Pulses for a Complex PRI Intercept
252(1)
14.10.6 Do Not Use PW as a Deinterleaving Parameter
253(1)
14.10.7 Time Out Single Intercept Tracks and Do Not Display on the Operator's Screen
253(2)
Chapter 15 Reflections and Multipath
255(14)
15.1 Types of Reflections Affecting ESM Systems
255(3)
15.2 Multipath
258(2)
15.3 Multipath in Amplitude Comparison Systems
260(1)
15.4 Multipath in TDOA Systems
261(3)
15.5 Multipath in Phase Comparison Systems
264(2)
15.6 Evidence for Multipath
266(3)
References
267(2)
Chapter 16 Factors Affecting Multipath
269(26)
16.1 ESM Antenna Configuration
269(7)
16.2 Radar Beamwidth
276(4)
16.3 Reflection Geometry
280(2)
16.4 Range to the Radar
282(6)
16.5 Reflection Coefficient
288(7)
Reference
293(2)
Chapter 17 Extent of the Multipath Problem and Possible Solutions
295(22)
17.1 Platform-Based Reflections
295(2)
17.2 Ground-Based Reflections
297(4)
17.3 Common DOA Profiles for Scanning Radars
301(1)
17.4 Possible Solutions to the Multipath Problem for All Types of ESM
301(8)
17.4.1 Colocate the ESM Antennas
302(1)
17.4.2 Select the Pulses for Use in Track Creation
302(3)
17.4.3 Use of Several Scan Peaks
305(2)
17.4.4 Reduce the Pulse Amplitude Measurement Time
307(1)
17.4.5 Classify the DOA Scan Type
308(1)
17.4.6 Use Intrapulse Amplitude Profiles
309(1)
17.5 Solutions for Multipath in Amplitude Comparison Systems
309(2)
17.6 Solutions for Multipath in TDOA Systems
311(1)
17.7 Solution for Multipath in Phase Comparison Systems
312(1)
17.8 Conclusions on Multipath
313(4)
References
315(2)
Chapter 18 The Future for ESM Systems
317(12)
18.1 The Future of the RF Environment
317(6)
18.1.1 AESA Radars
317(2)
18.1.2 Multiple Input Multiple Output Radar
319(1)
18.1.3 Monopulse Radars
320(1)
18.1.4 Broadband Radar
321(2)
18.2 ESM Processing Considerations
323(2)
18.2.1 DOA Measurement
323(1)
18.2.2 Deinterleavers
324(1)
18.3 The Future of ESM Library Matching
325(1)
18.4 Multiplatform ESM
325(1)
18.5 Autonomous/Intelligent EW Systems
326(3)
References
326(3)
Appendix A Radar Beam Pattern Creation
329(4)
Reference
332(1)
Appendix B Reflection Coefficients
333(4)
Reference
336(1)
Acronyms and Abbreviations 337(4)
About the Author 341(2)
Index 343