Part I Theory of Grey—box Process Identification |
|
|
|
3 | (20) |
|
|
3 | (1) |
|
1.2 White, Black, and Grey Boxes |
|
|
4 | (9) |
|
1.2.1 White—box Identification |
|
|
5 | (1) |
|
1.2.2 Black—box Identification |
|
|
6 | (4) |
|
1.2.3 Grey—box Identification |
|
|
10 | (3) |
|
|
13 | (4) |
|
|
14 | (1) |
|
1.3.2 How to Specify a Model Set |
|
|
15 | (2) |
|
1.4 ...and a Way to Get Answers |
|
|
17 | (1) |
|
1.5 Tools for Grey—box Identification |
|
|
18 | (5) |
|
|
18 | (3) |
|
1.5.2 Tools that Need to Be Developed |
|
|
21 | (2) |
|
|
23 | (54) |
|
|
23 | (8) |
|
2.1.1 Time Variables and Sampling |
|
|
24 | (1) |
|
2.1.2 Process, Environment, and Data Interfaces |
|
|
25 | (2) |
|
2.1.3 Multi—component Models |
|
|
27 | (2) |
|
2.1.4 Expanding a Model Class |
|
|
29 | (2) |
|
|
31 | (10) |
|
2.2.1 Argument Relations and Attributes |
|
|
34 | (3) |
|
2.2.2 Graphic Representations |
|
|
37 | (4) |
|
|
41 | (10) |
|
|
42 | (1) |
|
2.3.2 Credibility Ranking |
|
|
43 | (1) |
|
2.3.3 Model Classes with Inherent Conservation Law |
|
|
43 | (1) |
|
2.3.4 Modelling 'Actuators' |
|
|
44 | (2) |
|
2.3.5 Modelling 'Input Noise' |
|
|
46 | (3) |
|
2.3.6 Standard I/O Interface Models |
|
|
49 | (2) |
|
2.4 Fitting and Falsification |
|
|
51 | (6) |
|
|
52 | (2) |
|
2.4.2 Nesting and Fair Tests |
|
|
54 | (1) |
|
2.4.3 Evaluating Loss and its Derivatives |
|
|
55 | (1) |
|
|
56 | (1) |
|
2.4.5 Equivalent Discrete—time Model |
|
|
56 | (1) |
|
2.5 Performance Optimization |
|
|
57 | (5) |
|
2.5.1 Controlling the Updating of Sensitivity Matrices |
|
|
58 | (1) |
|
2.5.2 Exploiting the Sparsity of Sensitivity Matrices |
|
|
59 | (1) |
|
2.5.3 Using Performance Optimization |
|
|
60 | (2) |
|
|
62 | (3) |
|
|
65 | (12) |
|
|
65 | (2) |
|
2.7.2 A Method for Grey—box Model Design |
|
|
67 | (1) |
|
2.7.3 What is Expected from the User? |
|
|
68 | (1) |
|
2.7.4 Limitations of MoCaVa |
|
|
69 | (1) |
|
|
69 | (2) |
|
|
71 | (6) |
Part II Tutorial on MoCaVa |
|
|
|
77 | (6) |
|
|
77 | (1) |
|
3.1.1 System Requirements |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
3.1.5 The HTML User's Manual |
|
|
78 | (1) |
|
|
78 | (1) |
|
3.3 Making a Data File for MoCaVa |
|
|
78 | (5) |
|
|
83 | (64) |
|
4.1 Creating a New Project |
|
|
83 | (2) |
|
4.2 The User's Guide and the Pilot Window |
|
|
85 | (1) |
|
4.3 Specifying the Data Sample |
|
|
86 | (2) |
|
4.3.1 The Time Range Window |
|
|
86 | (2) |
|
4.4 Creating a Model Component |
|
|
88 | (13) |
|
4.4.1 Handling the Component Library |
|
|
89 | (1) |
|
4.4.2 Entering Component Statements |
|
|
90 | (2) |
|
4.4.3 Classifying Arguments |
|
|
92 | (3) |
|
4.4.4 Specifying I/O Interfaces |
|
|
95 | (3) |
|
4.4.5 Specifying Argument Attributes |
|
|
98 | (2) |
|
4.4.6 Specifying Implicit Attributes |
|
|
100 | (1) |
|
|
100 | (1) |
|
4.5 Specifying Model Class |
|
|
101 | (2) |
|
|
103 | (3) |
|
4.6.1 Setting the Origin of the Free Parameter Space |
|
|
103 | (1) |
|
4.6.2 Selecting Variables to be Plotted |
|
|
104 | (1) |
|
4.6.3 Appraising Model Class |
|
|
105 | (1) |
|
|
106 | (1) |
|
4.8 Fitting a Tentative Model Structure |
|
|
107 | (6) |
|
|
108 | (3) |
|
4.8.2 Appraising the Search Result |
|
|
111 | (2) |
|
4.9 Testing a Tentative Model Structure |
|
|
113 | (8) |
|
4.9.1 Appraising a Tentative Model |
|
|
116 | (2) |
|
|
118 | (1) |
|
4.9.3 Interpreting the Test Results |
|
|
119 | (2) |
|
4.10 Refining a Tentative Model Structure |
|
|
121 | (1) |
|
4.11 Multiple Alternative Structures |
|
|
122 | (2) |
|
4.12 Augmenting a Disturbance Model |
|
|
124 | (8) |
|
4.13 Checking the Final Model |
|
|
132 | (2) |
|
4.14 Terminals and 'Stubs' |
|
|
134 | (1) |
|
|
135 | (3) |
|
4.16 Effects of Incorrect Disturbance Structure |
|
|
138 | (2) |
|
4.17 Exporting/Importing Parameters |
|
|
140 | (1) |
|
4.18 Suspending and Exiting |
|
|
141 | (2) |
|
|
142 | (1) |
|
4.19 Resuming a Suspended Session |
|
|
143 | (1) |
|
4.20 Checking Integration Accuracy |
|
|
143 | (4) |
|
|
147 | (38) |
|
|
147 | (7) |
|
|
148 | (5) |
|
5.1.2 User's Functions and Library |
|
|
153 | (1) |
|
|
154 | (5) |
|
5.3 Importing External Models |
|
|
159 | (26) |
|
5.3.1 Using Dymola™ as Modelling Tool for MoCaVa |
|
|
160 | (6) |
|
5.3.2 Detecting Over—parametrization |
|
|
166 | (4) |
|
5.3.3 Assigning Variable Input to Imported Models |
|
|
170 | (3) |
|
5.3.4 Selective Connection of Arguments to Dymola™ Models |
|
|
173 | (12) |
Part III Case Studies |
|
|
6 Case 1: Rinsing of the Steel Strip in a Rolling Mill |
|
|
185 | (50) |
|
|
185 | (1) |
|
6.2 Step 1: A Phenomenological Description |
|
|
185 | (4) |
|
|
185 | (3) |
|
6.2.2 The Measurement Gauges |
|
|
188 | (1) |
|
|
189 | (1) |
|
6.3 Step 2: Variables and Causality |
|
|
189 | (5) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
6.3.4 Relations to Measured Variables |
|
|
192 | (2) |
|
|
194 | (9) |
|
6.4.1 Basic Mass Balances |
|
|
194 | (7) |
|
|
201 | (2) |
|
|
203 | (3) |
|
6.6 Refining the Model Class |
|
|
206 | (7) |
|
|
206 | (5) |
|
|
211 | (2) |
|
6.7 Continuing Calibration |
|
|
213 | (2) |
|
6.8 Refining the Model Class Again |
|
|
215 | (2) |
|
|
215 | (2) |
|
6.9 More Hypothetical Improvements |
|
|
217 | (5) |
|
6.9.1 Effective Mixing Volumes |
|
|
217 | (2) |
|
6.9.2 Avoiding the pitfall of 'Data Description' |
|
|
219 | (3) |
|
6.10 Modelling Disturbances |
|
|
222 | (3) |
|
|
222 | (1) |
|
|
223 | (2) |
|
6.11 Determining the Simplest Environment Model |
|
|
225 | (8) |
|
6.11.1 Variable Input Acid Concentration |
|
|
225 | (1) |
|
6.11.2 Unexplained Variation in Residual Acid Concentration |
|
|
225 | (4) |
|
6.11.3 Checking for Possible Over—fitting |
|
|
229 | (4) |
|
6.11.4 Appraising Roller Conditions |
|
|
233 | (1) |
|
6.12 Conclusions from the Calibration Session |
|
|
233 | (2) |
|
7 Case 2: Quality Prediction in a Cardboard Making Process |
|
|
235 | (78) |
|
|
235 | (1) |
|
7.2 Step 1: A Phenomenological Description |
|
|
235 | (2) |
|
|
237 | (7) |
|
7.4 Step 2: Variables and Causality |
|
|
244 | (4) |
|
7.4.1 Relations to Measured Variables |
|
|
247 | (1) |
|
|
248 | (23) |
|
7.5.1 The Bending Stiffness |
|
|
248 | (5) |
|
|
253 | (7) |
|
|
260 | (2) |
|
|
262 | (3) |
|
|
265 | (2) |
|
|
267 | (2) |
|
7.5.7 The Pulp Constituents |
|
|
269 | (2) |
|
|
271 | (8) |
|
7.7 Expanding the Tentative Model Class |
|
|
279 | (11) |
|
|
279 | (5) |
|
7.7.2 The Mixing—tank Dynamics |
|
|
284 | (3) |
|
|
287 | (2) |
|
7.7.4 Filtering the "Kappa" Input |
|
|
289 | (1) |
|
7.8 Checking for Over—fitting: The SBE Rule |
|
|
290 | (3) |
|
7.9 Ending a Calibration Session |
|
|
293 | (2) |
|
7.9.1 'Black—box' vs 'White—box' Extensions |
|
|
293 | (1) |
|
7.9.2 Determination vs Randomness |
|
|
294 | (1) |
|
7.10 Modelling Disturbances |
|
|
295 | (1) |
|
7.11 Calibrating Models with Stochastic Input |
|
|
296 | (10) |
|
7.11.1 Determination vs Randomness Revisited |
|
|
299 | (5) |
|
|
304 | (2) |
|
7.12 Conclusions from the Calibration Session |
|
|
306 | (7) |
Appendices |
|
|
A Mathematics and Algorithms |
|
|
313 | (28) |
|
|
313 | (3) |
|
|
316 | (1) |
|
|
317 | (4) |
|
A.3.1 The Reference Trajectory |
|
|
317 | (1) |
|
A.3.2 The State Deviation |
|
|
318 | (1) |
|
A.3.3 The Equivalent Discrete—time Sensitivity Matrices |
|
|
318 | (3) |
|
|
321 | (1) |
|
A.4.1 The Equivalent Discrete—time Model |
|
|
322 | (1) |
|
A.5 Mixed Algebraic and Differential Equations |
|
|
322 | (4) |
|
A.6 Performance Optimization |
|
|
326 | (4) |
|
A.6.1 The SensitivityUpdateControl Function |
|
|
327 | (3) |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
331 | (6) |
|
|
331 | (1) |
|
A.8.2 Input Interpolators |
|
|
331 | (3) |
|
|
334 | (1) |
|
|
335 | (2) |
|
A.9 The Advanced Specification Window |
|
|
337 | (4) |
|
A.9.1 Optimization for Speed |
|
|
337 | (1) |
|
|
338 | (1) |
|
A.9.3 Internal Integration Interval |
|
|
338 | (1) |
|
|
339 | (2) |
Glossary |
|
341 | (4) |
References |
|
345 | (4) |
Index |
|
349 | |