1 Introduction |
|
1 | (24) |
|
|
1 | (2) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
3 | (1) |
|
1.2.2 Comparison of ILC in Different Domains |
|
|
4 | (1) |
|
1.3 ILC Design and Analysis |
|
|
5 | (11) |
|
|
5 | (2) |
|
1.3.2 Two ILC Configurations |
|
|
7 | (2) |
|
1.3.3 Convergence Analysis |
|
|
9 | (3) |
|
|
12 | (4) |
|
1.4 Robotic System with ILC |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (6) |
2 Learnable Band Extension and Multi-channel Configuration |
|
25 | (28) |
|
2.1 A-Type Learning Control |
|
|
26 | (1) |
|
2.2 Convergence Analysis of A-Type ILC |
|
|
26 | (1) |
|
|
27 | (2) |
|
2.3.1 Lead-Time Selection |
|
|
28 | (1) |
|
|
28 | (1) |
|
2.3.3 Robustness in Design |
|
|
28 | (1) |
|
2.4 A Design Example of A-Type ILC |
|
|
29 | (4) |
|
2.4.1 Learning Control Design |
|
|
29 | (2) |
|
2.4.2 Comparison of D-, P-, PD-, and A-Type ILCs |
|
|
31 | (1) |
|
2.4.3 Case Study and Experiments |
|
|
32 | (1) |
|
2.5 A-Type ILC Based Multiple Channel Learning |
|
|
33 | (8) |
|
2.5.1 Multi-channel Structure for ILC |
|
|
35 | (3) |
|
|
38 | (3) |
|
2.6 Multi-channel A-Type ILC |
|
|
41 | (1) |
|
2.7 Design of Multi-channel A-Type ILC |
|
|
42 | (2) |
|
2.8 Robot Application of Multi-channel A-Type ILCs |
|
|
44 | (5) |
|
|
49 | (1) |
|
|
50 | (3) |
3 Learnable Bandwidth Extension by Auto-Tunings |
|
53 | (22) |
|
3.1 Cutoff Frequency Tuning |
|
|
54 | (9) |
|
3.1.1 Objective and Problems |
|
|
54 | (1) |
|
|
55 | (2) |
|
3.1.3 Learning Divergence |
|
|
57 | (3) |
|
3.1.4 Cutoff Frequency Tuning |
|
|
60 | (1) |
|
3.1.5 Termination of Tuning |
|
|
61 | (2) |
|
|
63 | (3) |
|
|
64 | (1) |
|
|
64 | (2) |
|
3.3 Experiment on Auto-Tuning ILC |
|
|
66 | (7) |
|
3.3.1 Experiment 1: A-Type ILC with 1 = 5 and γ = 1 |
|
|
67 | (2) |
|
3.3.2 Experiment 2: One-Step-Ahead ILC with 1 = 1 and γ = 1 |
|
|
69 | (2) |
|
3.3.3 Experiment 3: Tuning Lead Step with γ = 1 |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
73 | (2) |
4 Reverse Time Filtering Based ILC |
|
75 | (28) |
|
4.1 Best Phase Lead and Generation Method for SISO ILC System |
|
|
76 | (3) |
|
4.2 Learning Control Using Reversed Time Input Runs |
|
|
79 | (2) |
|
|
79 | (1) |
|
4.2.2 Model Based Approach |
|
|
80 | (1) |
|
4.3 Comparison with Other Works |
|
|
81 | (1) |
|
4.4 Case Study of Robot Application |
|
|
82 | (8) |
|
|
82 | (2) |
|
4.4.2 Reverse Time Filtering Using a Model |
|
|
84 | (1) |
|
4.4.3 Robot Performance and Experiments |
|
|
85 | (5) |
|
4.5 MIMO ILC System and Error Contraction |
|
|
90 | (1) |
|
4.6 Clean System Inversion ILC |
|
|
91 | (3) |
|
|
94 | (2) |
|
4.8 An Example of Robot Joints and Experiments |
|
|
96 | (4) |
|
|
100 | (1) |
|
|
101 | (2) |
5 Wavelet Transform Based Frequency Tuning ILC |
|
103 | (24) |
|
5.1 Wavelet Packet Algorithm for Error Analysis |
|
|
104 | (5) |
|
5.1.1 Wavelet Packet Algorithm |
|
|
105 | (2) |
|
5.1.2 Error Analysis Using Wavelet Packet Algorithm |
|
|
107 | (2) |
|
5.2 Cutoff Frequency Tuning ILC |
|
|
109 | (4) |
|
5.2.1 Cutoff Frequency Tuning Scheme |
|
|
111 | (1) |
|
5.2.2 Design of Zero-Phase Low-Pass Filter |
|
|
112 | (1) |
|
5.3 Time-Frequency Domain Analysis |
|
|
113 | (2) |
|
5.4 Case Study of Frequency Tuning ILC |
|
|
115 | (10) |
|
5.4.1 Determination of Learning Gain |
|
|
115 | (2) |
|
5.4.2 Determination of Lead Step |
|
|
117 | (1) |
|
5.4.3 Determination of Decomposition Level |
|
|
118 | (1) |
|
5.4.4 Experimental Results |
|
|
119 | (6) |
|
|
125 | (1) |
|
|
125 | (2) |
6 Learning Transient Performance with Cutoff-Frequency Phase-In |
|
127 | (26) |
|
6.1 Upper Bound of Trajectory Length for Good Learning Transient |
|
|
128 | (5) |
|
6.2 Cutoff-Frequency Phase-In Method |
|
|
133 | (1) |
|
6.3 Sliding Cutoff-Frequency Phase-In Method |
|
|
134 | (1) |
|
6.4 Robot Case Study with Experimental Results |
|
|
135 | (16) |
|
6.4.1 Parameter Selection |
|
|
135 | (1) |
|
6.4.2 Overcoming Initial Position Offset |
|
|
136 | (5) |
|
6.4.3 Improving Tracking Accuracy |
|
|
141 | (10) |
|
|
151 | (1) |
|
|
151 | (2) |
7 Pseudo-Downsampled ILC |
|
153 | (28) |
|
|
153 | (9) |
|
7.1.1 Pseudo-Downsampled ILC |
|
|
158 | (2) |
|
|
160 | (2) |
|
7.2 Learning Data Processing |
|
|
162 | (5) |
|
|
162 | (1) |
|
7.2.2 Anti-aliasing Filtering and Anti-imaging Filtering |
|
|
163 | (1) |
|
|
164 | (3) |
|
|
167 | (5) |
|
7.3.1 Convergence of Pseudo-Downsampled ILC |
|
|
167 | (5) |
|
7.3.2 Convergence Analysis of Two-Mode ILC |
|
|
172 | (1) |
|
7.4 Experimental Study of Downsampled ILC |
|
|
172 | (7) |
|
7.4.1 Parameter Selection |
|
|
172 | (2) |
|
7.4.2 Experimental Study of Two-Mode ILC |
|
|
174 | (5) |
|
|
179 | (1) |
|
|
179 | (2) |
8 Cyclic Pseudo-Downsampled ILC |
|
181 | (30) |
|
8.1 Cyclic Pseudo-Downsampling ILC |
|
|
182 | (1) |
|
8.2 Convergence and Robustness Analysis |
|
|
183 | (11) |
|
|
194 | (14) |
|
8.3.1 Parameter Selection |
|
|
194 | (2) |
|
8.3.2 Experiment of Cyclic Pseudo-Downsampled ILC |
|
|
196 | (12) |
|
|
208 | (1) |
|
|
209 | (2) |
9 Possible Future Research |
|
211 | (4) |
Appendix A: A Robotic Test-Bed for Iterative Learning Control |
|
215 | |